Плюсануть
Поделиться
Класснуть
Запинить

Задачи из рубрикатора

Тег: Обход в ширину

Условие задачи  
ID 37016
Преобразуем четырехзначные
Темы: Обход в ширину   

Витя хочет придумать новую игру с числами. В этой игре от игроков требуется преобразовывать четырехзначные числа не содержащие нулей при помощи следующего разрешенного набора действий:

1. Можно увеличить первую цифру числа на 1, если она не равна 9.
2. Можно уменьшить последнюю цифру на 1, если она не равна 1.
3. Можно циклически сдвинуть все цифры на одну вправо.
4. Можно циклически сдвинуть все цифры на одну влево.

Например, применяя эти правила к числу 1234 можно получить числа 2234, 1233, 4123 и 2341 соответственно. Точные правила игры Витя пока не придумал, но пока его интересует вопрос, как получить из одного числа другое за минимальное количество операций.


Входные данные: на вход подаются два различных четырехзначных числа, каждое из которых не содержит нулей. Каждое число с новой строки

Выходные данные: Программа должна вывести последовательность четырехзначных чисел, не содержащих нулей. Последовательность должна начинаться первым из данных чисел и заканчиваться вторым из данных чисел, каждое последующее число в последовательности должно быть получено из предыдущего числа применением одного из правил. Количество чисел в последовательности должно быть минимально возможным.

Примеры
Входные данные Выходные данные
1 1234
4321
1234
2234
3234
4323
4322
4321

ID 19885
Длина пути
Темы: Обход в ширину    Очередь   

В неориентированном графе требуется найти длину кратчайшего пути между двумя вершинами.
 
Входные данные: 
- в первой строке входных данных записано число N - количество вершин в графе (\(1<=N<=100\));
- далее с новой строки записана матрица смежности (0 обозначает отсутствие ребра, 1 - наличие ребра);
- в последней строке записаны номера двух вершин - начальной и конечной.
 
Выходные данные: выведите длину кратчайшего пути. Если пути не существует, выведите одно число -1.

 

Примеры
Входные данные Выходные данные
1
5
0 1 0 0 1
1 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
3 5
3

ID 22020
Путь
Темы: Обход в ширину   

В неориентированном графе требуется найти минимальный путь между двумя вершинами. 
 
Входные данные: 
- в первой строке записано число N - количество вершин в графе (\(1<=N<=100\));
- в следующих строках задана матрица смежности (0 обозначает отсутствие ребра, 1 - наличие ребра);
- в последней строке записаны номера двух вершин - начальной и конечной.
 
Выходные данные: выведите сначала L - длину пути (количество ребер, которые нужно пройти). Затем выведите L+1 число - вершины в порядке следования вдоль этого пути. Если пути не существует, выведите одно число -1.

Примеры
Входные данные Выходные данные
1
5
0 1 0 0 1
1 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
3 5
3
3 2 1 5

ID 33251
Один конь
Темы: Обход в ширину   

На шахматной доске NxN в клетке (x1, y1) стоит голодный шахматный конь. Он хочет попасть в клетку (x2, y2), где растет вкусная шахматная трава. Какое наименьшее количество ходов он должен для этого сделать?
 
Входные данные: на вход программы поступает пять чисел: N, x1, y1, x2, y2 (\(5 <= N <= 20\), \(1 <= x_1,\ y_1,\ x_2,\ y_2 <= N\)).
Левая верхняя клетка доски имеет координаты (1, 1), правая нижняя - (N, N).
 
Выходные данные: выведите единственное число K - наименьшее необходимое число ходов коня. 
 

 

Примеры
Входные данные Выходные данные
1 5
1 1
3 2
1

ID 34976
Эвакуация
Темы: Обход в ширину   

Одна из Сверхсекретных организаций, чье название мы не имеем право разглашать, представляет собой сеть из N подземных бункеров, соединенных равными по длине туннелями, по которым из любого бункера можно добраться до любого другого (не обязательно напрямую). Связь с внешним миром осуществляется через специальные засекреченные выходы, которые расположены в некоторых из бункеров.

Организации понадобилось составить план эвакуации персонала на случай экстренной ситуации. Для этого для каждого из бункеров необходимо узнать, сколько времени потребуется для того, чтобы добраться до ближайшего из выходов. Вам, как специалисту по таким задачам, поручено рассчитать необходимое время для каждого из бункеров по заданному описанию помещения Сверхсекретной организации. Для вашего же удобства бункеры занумерованы числами от 1 до N.

Входные данные: 
- в первых двух строках вводятся два натуральных числа N, K (\(1 <= N <= 100000\), \(1 <= K <= N\)) — количество бункеров и количество выходов соответственно;
- в третьей строке через пробел записаны K различных чисел от 1 до N, обозначающих номера бункеров, в которых расположены выходы;
- в четвертой строке идёт число M (\(1 <= M <= 100000\)) — количество туннелей;
- в следующих M  строках вводятся пары чисел – номера бункеров, соединенных туннелем.
По каждому из туннелей можно двигаться в обе стороны. В организации не существует туннелей, ведущих из бункера в самого себя, зато может существовать более одного туннеля между парой бункеров.

Выходные данные: выведите N чисел, разделенных пробелом — для каждого из бункеров минимальное время, необходимое чтобы добраться до выхода. Считайте, что время перемещения по одному туннелю равно 1.
 

 

Примеры
Входные данные Выходные данные
1 3
1

3
1 2
3 1
2 3
1 0 1
2 10
2
10 8 
9
6 7
7 5
5 8
8 1
1 10
10 3
3 4
4 9
9 2
1 4 1 2 1 3 2 0 3 0

ID 38273
Нью-Кэпитал
Темы: Обход в ширину    Разбор случаев   

В стране из предыдущей задачи много специалистов не только по защите детей, но и про проектированию городов. Поэтому, чтобы решить проблему пробок в перенаселенной столице раз и навсегда, было решено построить новую столицу и перенести все правительство туда. Сказано — сделано.

Улицы в новой столице образуют правильную прямоугольную сетку, в которой все улицы пересекаются ровно через одну местную единицу длины. Вертикально идущие улицы называются улицами, а горизонтально идущие — аллеями. Всего в городе получилось 2000 улиц и 2000 аллей, поэтому, чтобы не придумывать много новых названий, их все просто пронумеровали. Улицы пронумеровали с запада на восток числами от −1000 до 999, а аллеи — с юга на север, тоже числами от −1000 до 999. Центром города считаются кварталы на пересечении улиц и аллей с номерами от −100 до 100.

Чтобы увеличить пропускную способность дорог в городе, было решено сделать все улицы и аллеи односторонними. По улицам с четными номерами разрешается ехать только с севера на юг, а по улицам с нечетными номерами — только с юга на север. Аналогично, по аллеям с четными номерами можно ехать только с востока на запад, а с нечетными — только с запада на восток.

Сколько местных единиц длины придется проезжать мэру новой столицы каждый вечер, возвращаясь из мэрии города домой? И мэрия, и дом мэра находятся в центре города. Мэр едет домой кратчайшим путем, соблюдая, впрочем, правила дорожного движения.

Входные данные
В первой строке даны два числа x1 и y1 — номер улицы и номер аллеи, на пересечении которых находится мэрия. В второй строке даны два числа x2 и y2 — номер улицы и номер аллеи, на пересечении которых находится дом мэра. Все числа целые и не превосходят по модулю 100.

Выходные данные
Выведите одно число: длину кратчайшего пути от мэрии до дома мэра на автомобиле.-
 

Примеры
Входные данные Выходные данные
1 0 0
1 1
4
2 3 5
2 4
4

ID 38434
Игра с фишками
Темы: Обход в ширину    Двумерные массивы   

Вы являетесь одним из разработчиков новой компьютерной игры. Игра происходит на прямоугольной доске, состоящей из W×H клеток. Каждая клетка может либо содержать, либо не содержать фишку (см. рисунок).
Важной частью игры является проверка того, соединены ли две фишки путем, удовлетворяющим следующим свойствам:
1.    Путь должен состоять из отрезков вертикальных и горизонтальных прямых.
2.    Путь не должен пересекать других фишек.
При этом часть пути может оказаться вне доски. Например:

Фишки с координатами (1, 3) и (4, 4) могут быть соединены. Фишки с координатами (2, 3) и (5, 3) тоже могут быть соединены. А вот фишки с координатами (2, 3) и (3, 4) соединить нельзя — любой соединяющий их путь пересекает другие фишки.
Вам необходимо написать программу, проверяющую, можно ли соединить две фишки путем, обладающим вышеуказанными свойствами, и, в случае положительного ответа, определяющую минимальную длину такого пути (считается, что путь имеет изломы, начало и конец только в центрах клеток (или “мнимых клеток”, расположенных вне доски), а отрезок, соединяющий центры двух соседних клеток, имеет длину 1).

Формат входных данных
Первая строка входного файла содержит два натуральных числа: W — ширина доски, H — высота доски (1 ≤ W, H ≤ 75). Следующие H строк содержат описание доски: каждая строка состоит ровно из W символов: символ “X” (заглавная английская буква “экс”) обозначает фишку, символ “.” (точка) обозначает пустое место. Все остальные строки содержат описания запросов: каждый запрос состоит из четырех натуральных чисел, разделенных пробелами — X1, Y1, X2, Y2, причем 1 ≤ X1, X2 ≤ W, 1 ≤ Y1, Y2 ≤ H. Здесь (X1, Y1) и (X2, Y2) — координаты фишек, которые требуется соединить (левая верхняя клетка имеет координаты (1, 1)). Гарантируется, что эти координаты не будут совпадать (кроме последнего запроса). Последняя строка содержит запрос, состоящий из четырех чисел 0; этот запрос обрабатывать не надо. Количество запросов не превосходит 20.

Формат выходных данных
Для каждого запроса необходимо вывести одно целое число на отдельной строке — длину кратчайшего пути, или 0, если такого пути не существует.
Примеры
Входные данные Выходные данные
1
5 4
XXXXX
X...X
XXX.X
.XXX.
2 3 5 3
1 3 4 4
2 3 3 4
0 0 0 0
5
6
0
2
4 4
XXXX
.X..
..X.
X...
1 1 3 1
0 0 0 0
4

ID 38573
Роботы
Темы: Обход в ширину    Задачи на моделирование   

В подземелье есть N залов, соединенных туннелями. В некоторых залах находятся роботы, которые одновременно получили команду собраться в одном месте.

Роботы устроены так, что, получив команду, они все начали двигаться с такой скоростью, что туннель между двумя любыми залами преодолевают за 1 минуту. Роботы не могут останавливаться (в том числе и в залах), а также менять направление движения, находясь в туннелях (однако попав в зал, робот может из него пойти по тому же туннелю, по которому он пришел в этот зал).

Напишите программу, вычисляющую, через какое минимальное время все роботы смогут собраться вместе (в зале или в туннеле).

Входные данные
Сначала на вход программы поступают числа N — количество залов (1≤N≤400) и K — количество туннелей (1≤K≤20000). Далее вводится K пар чисел, каждая пара описывает номера залов, соединяемых туннелем (по туннелю можно перемещаться в обе стороны). Между двумя залами может быть несколько туннелей. Туннель может соединять зал с самим собой. Далее следует число M (1≤M≤400) — количество роботов. Затем вводятся M чисел, задающих номера залов, где вначале расположены роботы. В одном зале может быть несколько роботов.

Выходные данные
Выведите минимальное время в минутах, через которое роботы могут собраться вместе. Если роботы никогда не смогут собраться вместе, выведите одно число –1 (минус один).

Примеры
Входные данные Выходные данные
1 4 5
1 2
2 3
3 4
1 4
1 3
3
1 2 4
1
2 3 2
1 2
2 3
2
1 3
1

ID 38585
Транзитный путь
Темы: Алгоритмы на графах    Кратчайшие пути в графе    Обход в ширину   

Вам дано дерево с N вершинами. Здесь дерево - это разновидность графа, а точнее, связный неориентированный граф с N−1 ребром, где N - количество его вершин. I-е ребро (\(1<=i<=N-1\)) соединяет вершины ai и bi и имеет длину ci.
Вам также дано Q запросов и целое число K. Для каждого j-го запроса (\(1<=j<=Q\)) найдите длину кратчайшего пути от вершины xj к вершине yj через вершину K.

Входные данные
В первой строке записано целое число N (\(3<=N<=10^5\)). В следующих N строках записаны вершины ai и bi (\(1<=a_i,b_i<=N\)\(1<=i<=N-1\)) и длина между ними c(\(1<=c_i<=10^9\)\(1<=i<=N-1\))
Далее идут два числа Q и(\(1<=Q<=10^5\)\(1<=K<=N\)). В последних Q строках записаны целые числа xjy(\(x_j \neq y_j\),\(x_j \neq K\)\(y_j \neq K\) \(1<=j<=Q\), )
Заданный граф является деревом.

Выходные данные
Выведите ответы на запросы в Q строках. В j-й строке выведите ответ на j-й запрос.

 

Примеры
Входные данные Выходные данные Пояснение
1 5
1 2 1
1 3 1
2 4 1
3 5 1
3 1
2 4
2 3
4 5
3
2
4
Кратчайшие пути для трех запросов следующие:

Запрос 1: Вершина 2 → Вершина 1 → Вершина 2 → Вершина 4: Длина 1 + 1 + 1 = 3
Запрос 2: Вершина 2 → Вершина 1 → Вершина 3: Длина 1 + 1 = 2
Запрос 3: Вершина 4 → Вершина 2 → Вершина 1 → Вершина 3 → Вершина 5: Длина 1 + 1 + 1 + 1 = 4
2 7
1 2 1
1 3 3
1 4 5
1 5 7
1 6 9
1 7 11
3 2
1 3
4 5
6 7
5
14
22
Путь для каждого запроса должен проходить через вершину K = 2.
3 10
1 2 1000000000
2 3 1000000000
3 4 1000000000
4 5 1000000000
5 6 1000000000
6 7 1000000000
7 8 1000000000
8 9 1000000000
9 10 1000000000
1 1
9 10
17000000000  

 

ID 38625
Табличка
Темы: Обход в ширину   

Дана таблица, состоящая из N строк и M столбцов. В каждой клетке таблицы записано одно из чисел: 0 или 1. Расстоянием между клетками (x1, y1) и (x2, y2) назовем сумму |x1-x2|+|y1-y2|. Вам необходимо построить таблицу, в клетке (i, j) которой будет записано минимальное расстояние между клеткой (i, j) начальной таблицы и клеткой, в которой записана 1. Гарантируется, что хотя бы одна 1 в таблице есть.

Входные данные
В первой строке вводятся два натуральных числа N и M, не превосходящих 500. Далее идут N строк по M чисел - элементы таблицы.

Выходные данные
Требуется вывести N строк по M чисел - элементы искомой таблицы.

Примеры
Входные данные Выходные данные
1 2 3
0 0 1
1 0 0
1 1 0 
0 1 1 

ID 38628
Два коня
Темы: Обход в ширину   

На стандартной шахматной доске (8х8) живут 2 шахматных коня: Красный и Зеленый. Обычно они беззаботно скачут по просторам доски, пощипывая шахматную травку, но сегодня особенный день: у Зеленого коня День Рождения. Зеленый конь решил отпраздновать это событие вместе с Красным. Но для осуществления этого прекрасного плана им нужно оказаться на одной клетке. Заметим, что Красный и Зеленый шахматные кони сильно отличаются от черного с белым: они ходят не по очереди, а одновременно, и если оказываются на одной клетке, никто никого не съедает. Сколько ходов им потребуется, чтобы насладиться праздником?

Входные данные
На вход программы поступают координаты коней, записанные по стандартным шахматным правилам (т.е. двумя символами - маленькая латинская буква (от a до h) и цифра (от 1 до 8), задающие столбец и строку соответственно).

Выходные данные
Требуется вывести наименьшее необходимое количество ходов, либо число -1, если кони не могут встретиться.

Примеры
Входные данные Выходные данные
1 a1 a3 1