Плюсануть
Поделиться
Класснуть
Запинить

Задачи из рубрикатора

Тег: Перебор

Условие задачи  
ID 38204
Тапочки
Темы: Перебор   

У меня в прихожей стоят в ряд 20 тапочек – 10 левых и 10 правых. Приходя домой, я переобуваюсь и выбираю два тапочка – левый и правый, в которые мне удобнее всего засунуть ноги. Естественно, что левый тапочек должен стоять левее правого, и расстояние (количество других тапочек) между ними должно быть как можно меньше. Напишите программу, которая вычисляет, сколько же тапочек стоит между теми, которые мне удобнее всего надеть.

Входные данные
Вводится последовательность из 10 нулей и 10 единиц, записанных в некотором порядке. Единица соответствует левому тапочку, 0 – правому тапочку. Числа разделены пробелами.
Выходные данные
Программа должна вывести количество тапочек между самыми удобными тапочками, или -1, если таких нет.
 

Примеры
Входные данные Выходные данные
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

ID 38210
Будильники
Темы: Условный оператор    Одномерные массивы    Дата и время    Перебор   

Будильник в сотовом телефоне можно настроить так, чтобы он звонил каждый день в одно и то же время, либо в указанное время в определенный день недели. Независимо можно настроить несколько будильников.

По информации о будильниках и текущему времени и дню недели определите, когда прозвонит очередной будильник.

Входные данные
В первой строке вводятся три числа, задающие текущее время: день недели (от 1 до 7), часы и минуты.

Во второй строке вводится одно натуральное число N, не превосходящее 100 – количество будильников.

В следующих N строках вводятся описания N будильников. Описание каждого будильника состоит из трех чисел: дня недели (число от 1 до 7 для понедельника,  …, воскресенья, соответственно, 0 – если будильник должен звонить каждый день), часов (от 0 до 23), минут (от 0 до 59).


Выходные данные
Выведите  через пробел три числа, задающие день недели, часы и минуты, когда прозвонит ближайший будильник.
 

Примеры
Входные данные Выходные данные Пояснение
1 2 10 20
2
1 23 15
0 10 10
3 10 10  
2 7 1 1
3
7 0 59
7 23 59
7 1 1
7 1 1 Во втором примере третий будильник будет звенеть в начальный момент времени.

ID 38237
Буквы по кругу
Темы: Строки    Перебор   

По кругу записано несколько букв (возможно, повторяющихся). Петя интересуется, сможет ли он прочитать некоторое слово, если будет двигаться по кругу (в каком-либо направлении), не пропуская буквы (откуда начинать, и в какую сторону двигаться, он может выбрать сам).

Входные данные
В первой строке записаны строчные латинские буквы в том порядке, в котором они расставлены по кругу по часовой стрелке. Буквы записаны без пробелов, их количество не меньше 1 и не больше 100.

Во второй строке записано слово, которое хочет найти Петя. Оно также состоит из строчных латинских букв и имеет длину от 1 до 100.

Выходные данные
Выведите YES заглавными латинскими буквами, если такое слово можно прочитать, двигаясь по кругу, и NO в противном случае.

Примеры
Входные данные Выходные данные
1 abcdefg
abd
NO
2 abcdg
bag
YES
3 a
aaa
YES

ID 38239
Преферанс
Темы: Циклы    Перебор   

В некоторой карточной игре используется колода, в которой 4 туза. В игре принимает участие 4 игрока, каждому из которых раздается равное число карт, а две карты откладываются в прикуп.

Каждый игрок похвастал, сколько у него тузов. Определите, сколько игроков заведомо солгали.

Например, они сказали 1, 1, 1, 2. Следовательно, заведомо солгал 1 игрок. (Какие-то трое могли сказать правду, но все четверо правду сказать не могли, так как тузов всего 4).

Входные данные
Вводятся 4 числа (от 0 до 9 каждое), разделенных пробелом – количество тузов по словам первого, второго, третьего и четвертого игроков.

Выходные данные
Выведите одно число – минимальное количество игроков, которые заведомо солгали. Если все одновременно могли сказать правду, выведите число 0.

Примеры
Входные данные Выходные данные
1 1 1 1 2 1
2 1 1 1 1 0

ID 38318
Взвешивание
Темы: Перебор    Рекурсия   

Даны двухчашечные весы и набор гирек. На левую чашу весов положили взвешиваемый предмет весом K граммов. Можно ли привести весы в состояние равновесия, и если можно, то определите для каждой чаши весов, какие гирьки на нее для этого нужно положить. Имеющиеся гирьки разрешается класть на любую из чаш весов (каждая гирька имеется только в одном экземпляре, некоторые гирьки можно не использовать).

Входные данные
Вводится сначала K — вес предмета, который положили на левую чашу (1≤K≤50). Далее записано общее количество гирек N (1≤N≤10). Далее записано N различных натуральных чисел, не превышающих 50, — веса гирек.

Выходные данные
В первой строке выведите веса гирек, которые нужно поместить на левую чашу весов, во второй строке — гирьки, которые нужно поместить на правую чашу. Если на какую-то чашу ни одной гирьки помещать не нужно — выведите в этой строке число 0. Если с помощью данных гирек привести весы в равновесие нельзя, выведите одно число –1. Если вариантов несколько, выведите любой из них.
 

Примеры
Входные данные Выходные данные
1 5
2
3 5
0
5
2 5
3
6 3 4
4
3 6
3 5
1
2
-1

ID 38313
Квас
Темы: Перебор   

На тропическом острове в разгар туристического сезона особой популярностью пользуется квас. Раньше весь квас импортировался из России, но с увеличением популярности этого напитка встал вопрос о производстве кваса прямо на месте. На острове расположено N курортных городов, все города расположены на побережье. Вдоль побережья проходит единственная на острове кольцевая дорога, соединяющая все города. Движение по дороге возможно в любом направлении. Для каждого города известно, сколько бочек кваса требуется ему ежедневно.

Планируется построить всего один завод в каком-нибудь городе, и развозить продукцию по остальным городам. Перевозка одной бочки в соседний город стоит один тугрик (местная валюта).

Ваша задача состоит в том, чтобы определить, в каком из городов следует построить завод, чтобы минимизировать транспортные расходы.

Входные данные
Первая строка входных данных содержит число N – количество городов ( N ≤ 10) и еще N чисел – количество кваса, требуемое ежедневно 1-м, 2-м, …, N -м городом (города нумеруются подряд вдоль кольцевой дороги).

Выходные данные
Выведите одно число – номер города, в котором следует построить завод. Если подходящих городов окажется несколько – выведите номер любого из них.

Примеры
Входные данные Выходные данные Пояснение
1 3 5 3 10 3  
2 6 4 4 1 5 1 3 2 На острове 6 городов, потребность каждого города указана в кружочках, номер города рядом с кружочком.

Если построить завод во 2-м городе (он выделен серым), то потребуется заплатить 4 + 1 (стоимость перевозки в 1-й и 3-й города) + 5*2 + 3*2 (в 4-й и 6-й) + 1*3 (в 5-й см. рисунок).
Во 2-й вообще ничего не везем. Это будет 24 тугрика. Легко проверить, что если построить завод в других городах, сумма будет больше. Например, если построить в 4-м городе, то сумма составит 1 + 1 + 3*2 + 4*2 + 4*3 = 28 тугриков.

ID 38334
Простой квадрат
Темы: Простые задачи на перебор    Перебор   

У Пети имеется игровое поле размером 33, заполненное числами от 1 до 9. В начале игры он может поставить фишку в любую клетку поля. На каждом шаге игры разрешается перемещать фишку в любую соседнюю по стороне клетку, но не разрешается посещать одну и ту же клетку дважды. Петя внимательно ведет протокол игры, записывая в него цифры в том порядке, в котором фишка посещала клетки. Пете стало интересно, какое максимальное число он может получить в протоколе. Помогите ему ответить на этот вопрос.

Входные данные
Входной файл содержит описание поля — 3 строки по 3 целых числа, разделенных пробелами. Гарантируется, что все девять чисел различны и лежат в диапазоне от 1 до 9.

Выходные данные
Выведите одно целое число — максимальное число, которое могло получиться в протоколе при игре на данном поле.

Ответ можно выводить не в виде числа, а в виде строки или в виде последовательности отдельных цифр (но не разделяя их пробелами).

Примеры
Входные данные Выходные данные
1 1 2 3
4 5 6
7 8 9
987456321

ID 38369
Схема игры
Темы: Перебор    Разбиения   

В тактике футбола одним из основных понятий является схема игры. Она определяет, сколько из десяти полевых игроков будут играть в защите, сколько — в полузащите и сколько — в нападении.

Например, схема игры 5-3-2 означает, что в команде пять защитников, три полузащитника и два нападающих. В соответствии с современными представлениями на схему игры накладываются следующие ограничения: должно быть не менее одного и не более пяти защитников, не менее одного и не более пяти полузащитников и не более трех нападающих. Отметим, что нападающих может в команде и не быть совсем. Будем рассматривать только такие схемы.

Будем считать, что футбольное поле имеет длину 120 метров и ширину 80 метров. Введем на нем прямоугольную декартову систему координат таким образом, как показано на рисунке. Ворота рассматриваемой нами команды находятся слева.

Будем также считать, что игрок в некоторый момент времени находится в линии полузащиты, если он находится на расстоянии не более 20 метров от центральной линии. Соответственно, игрок находится в линии защиты, если он находится не более чем в 40 метрах от «своей» лицевой линии, и в линии нападения, если находится не более чем в 40 метрах от «чужой» лицевой линии.


Например, в ситуации, изображенной на рисунке, в линии защиты находятся четыре игрока, в линии полузащиты — три, в линии нападения — также три.

В процессе игры некоторые игроки могут перемещаться из одной линии в другую. В этой задаче будем считать, что возможно перемещение из полузащиты в защиту (и обратно) и из полузащиты в нападение (и обратно). Таким образом, игрок, который в соответствии со схемой игры является защитником, не может оказаться в линии нападения, и наоборот — игрок, который в соответствии со схемой игры является нападающим, не может оказаться в линии защиты. Кроме этого, в соответствии с установкой тренера из каждой линии в каждую могло перейти не более двух игроков.

Ваша задача состоит в том, чтобы написать программу, которая по положениям игроков в некоторый момент времени найдет все возможные схемы игры, при которых в течение игры могло возникнуть такое расположение игроков.

Входные данные
Входной файл содержит десять строк, содержащих по два целых числа xi и yi каждая, — координаты каждого из игроков команды (0 ≤ xi ≤ 120, xi ≠ 40, xi ≠ 80, 0 ≤ yi ≤ 80).

Выходные данные
В первой строке выходного файла выведите k — число схем игры, по которым может играть команда. В последующих k строках в произвольном порядке выведите описание каждой из этих схем. Следуйте формату данных, приведенному в примере.

Примеры
Входные данные Выходные данные
1 97 0
13 18
2 6
119 11
42 21
72 80
75 78
106 45
22 67
28 47
9
2-5-3
3-5-2
3-4-3
4-5-1
4-4-2
4-3-3
5-4-1
5-3-2
5-2-3