Плюсануть
Поделиться
Класснуть
Запинить


Олимпиадный тренинг

Вы можете самостоятельно решать эти задачи столько раз, сколько вам это понадобится.
   

Цепочка слов

Обход в глубину Бор

Цепочкой слов длины n назовем последовательность слов w1, w2, ..., wn такую, что для 1 ≤ i ≤ n слово wi является собственным префиксом слова wi + 1.
 
Напомним, что слово u длины k называется собственным префиксом слова v длины l, если l > k и первые k букв слова v совпадают со словом u.
 
Задано множество слов S = {s1, s2, ..., sm}. Найдите максимальную длину цепочки слов, которую можно построить, используя (возможно, не все) слова этого множества.
 
Входные данные
Первая строка входного файла содержит целое число m(1 ≤ m ≤ 255). Каждая из последующих m строк содержит по одному слову из множества S.
 
Все слова не пусты, имеют длину, не превосходящую 255 символов, и состоят только из строчных букв латинского алфавита.
 
Выходные данные
В выходной файл выведите ответ на задачу.

Ввод Вывод
3
a
ab
abc
 
5
a
ab
bc
bcd
add
2

Type Printer

Бор Обход в глубину

Вам нужно напечатать N слов на Movable Type Printer. Movable Type Printers — это старые принтеры, для работы которых требуется ставить маленькие металлические кусочки (каждый из кусочков содержит одну букву) в определенном порядке, образуя таким образом слова. Потом все они вдавливаются в лист бумаги. Таким образом печатается одно слово. Ваш принтер позволяет делать следующие операции:
 
Добавить букву в конец слова, находящегося сейчас на принтере.
Удалить последнюю букву из слова, находящегося сейчас на принтере. Эту операцию можно делать, только если слово содержит хотя бы одну букву.
Напечатать слово, находящееся на принтере (при этом слово никуда не исчезает, можно печатать его ещё раз и ещё раз).
Изначально на принтере содержится пустое слово. В конце печати на принтере можно оставить непустое слово. Слова, которые вам даны, вы можете печатать в произвольном порядке.
 
Каждая из трёх операций занимает одну единицу времени. Вам нужно найти последовательность операций, которая печатает данные N слов за минимальное время. Если минимальных последовательностaей несколько, выведите любую.
 
Входные данные
Ваша программа должна считать следующие входные данные:
 
На первой строке число N (1<=N<=25000).
На следующих N строках слова, состоящие из маленьких букв латинского алфавита. Длина каждого слова не превышает 20. Все слова различны.
 
Выходные данные
Ваша программа должна вывести следующие данные:
 
На первой строке M — число операций.
На следующих M строках по одному символу — описание операций. Каждая операция описывается одним символом:
Добавление символа обозначается собственно символом.
Удаление символа обозначается символом «-» (минус, ASCII-код 45).
Операция «напечатать текущее слово» обозначается символом «P» (заглавная латинская буква P).

Ввод Вывод
3
print
the
poem
20
t
h
e
P
-
-
-
p
o
e
m
P
-
-
-
r
i
n
t
P

Грядки

Обход в глубину

Прямоугольный садовый участок шириной N и длиной M метров разбит на квадраты со стороной 1 метр. На этом участке вскопаны грядки. Грядкой называется совокупность квадратов, удовлетворяющая таким условиям:

* из любого квадрата этой грядки можно попасть в любой другой квадрат этой же грядки, последовательно переходя по грядке из квадрата в квадрат через их общую сторону;
* никакие две грядки не пересекаются и не касаются друг друга ни по вертикальной, ни по горизонтальной сторонам квадратов (касание грядок углами квадратов допускается).
Подсчитайте количество грядок на садовом участке.

Входные данные
В первой строке находятся числа N и M через пробел, далее идут N строк по M символов. Символ # обозначает территорию грядки, точка соответствует незанятой территории. Других символов в исходном файле нет. 1 ≤ N, M ≤ 200.

Выходные данные
Вывести одно число - количество грядок на садовом участке.
Примеры

Входные данные Выходные данные
1 5 10
##..#####.
.#.#.#....
###..##.#.
..##.....#
.###.#####
5

Производство деталей

Обход в глубину

Предприятие «Авто-2010» выпускает двигатели для известных во всём мире автомобилей. Двигатель состоит ровно из n деталей, пронумерованных от 1 до n, при этом деталь с номером i изготавливается за pi секунд. Специфика предприятия «Авто-2010» заключается в том, что там одновременно может изготавливаться лишь одна деталь двигателя. Для производства некоторых деталей необходимо иметь предварительно изготовленный набор других деталей.

Генеральный директор «Авто-2010» поставил перед предприятием амбициозную задачу — за наименьшее время изготовить деталь с номером 1, чтобы представить её на выставке.

Требуется написать программу, которая по заданным зависимостям порядка производства между деталями найдёт наименьшее время, за которое можно произвести деталь с номером 1.

Входные данные
Первая строка входного файла содержит число n (1≤ n ≤ 100000) — количество деталей двигателя. Вторая строка содержит n натуральных чисел p1, p2, pn, определяющих время изготовления каждой детали в секундах. Время для изготовления каждой детали не превосходит 109 секунд.

Каждая из последующих n строк входного файла описывает характеристики производства деталей. Здесь i-я строка содержит число деталей ki, которые требуются для производства детали с номером i, а также их номера. В i-й строке нет повторяющихся номеров деталей. Сумма всех чисел ki не превосходит 200000.

Известно, что не существует циклических зависимостей в производстве деталей.

Выходные данные
В первой строке выходного файла должны содержаться два числа: минимальное время (в секундах), необходимое для скорейшего производства детали с номером 1 и число k деталей, которые необходимо для этого произвести. Во второй строке требуется вывести через пробел k чисел — номера деталей в том порядке, в котором следует их производить для скорейшего производства детали с номером 1.
 

Ввод Вывод
3
100 200 300
1 2
0
2 2 1
300 2
2 1
2
2 3
1 2
0
5 2
2 1
4
2 3 4 5
2 3 2
1 3
0
2 1 3
9 3
3 2 1

Баобаб

Обход в глубину

Дан неориентированный невзвешенный граф. Необходимо определить, является ли он деревом.
 
Входные данные: В первой строке содержится одно натуральное число N (N ≤ 100) - количество вершин в графе. Далее в N строках по N чисел - матрица смежности графа: в i-ой строке на j-ом месте стоит 1, если вершины i и j соединены ребром, и 0, если ребра между ними нет. На главной диагонали матрицы стоят нули. Матрица симметрична относительно главной диагонали.
 
Выходные данные: Вывести "YES", если граф является деревом, и "NO" иначе.

Примеры
Входные данные Выходные данные
1
6
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
NO
2
3
0 1 0
1 0 1
0 1 0
YES

Есть ли цикл?

Обход в глубину Алгоритм Флойда

Дан ориентированный граф. Требуется определить, есть ли в нем цикл.
 
Входные данные
В первой строке вводится число вершин N≤ 50. Далее в N строках следуют по N чисел, каждое из которых – 0 или 1. j-ое число в i-ой строке равно 1 тогда и только тогда, когда существует ребро, идущее из i-ой вершины в j-ую. Гарантируется, что на диагонали матрицы будут стоять нули.
 
Выходные данные
Выведите 0, если в заданном графе цикла нет, и 1, если он есть.

Ввод Вывод
3
0 1 0
0 0 1
0 0 0
0
3
0 1 0
0 0 1
1 0 0
1

Рекурсивный DFS

Обход в глубину

Дана матрица N (1 <= N <= 100) на M (1 <= M <= 100). В матрице имеются ‘.’ – пустые клетки и ‘#’ – клетки, которые нельзя посетить. Ходить можно только вверх, вниз, влево и вправо. Дано q запросов: номер строки и номер столбца, если эта клетка – ‘#’, то она станет ‘.’, иначе – ‘#’. Для каждого из q запросов определить, достижима ли из клетки Sx;Sy клетка tx;ty. Вывести на каждой строчке “Yes”, если достижима, и “No” - иначе. Гарантируется, что клетка Sx; Sy и клетка tx; ty не являются ‘#’ клеткой в каждом запросе.
Входные данные.
На первой строчке вводятся числа S_x (1 <= Sx <= 100), S_y (1 <= Sy <= 100), tx (1 <= tx <= 100), ty (1 <= ty <= 100), N (1 <= N <= 100), M(1 <= M <= 100) и q (1 <= q <= 100). На следующих N строках дается матрица, где ‘.’ – пустая клетка и ‘#’ – клетка, которую нельзя посетить. На следующих q строках дан номер строки и номер столбца, которые надо изменить.

Выходные данные.
Вывести на каждый из q запросов “Yes”, если из клетки Sx; Sy в клетку tx; ty можно попасть, “No” – иначе.
 
Ввод Вывод
1 1 2 3 3 3 2
.##
##.
###
1 2
2 2
No
Yes

Пояснение:
После первого запроса матрица будет такой:
.  .  #
# # .
# # #
Из точки 1;1 в 2;3 нет прохода, следовательно, выводим “No”.

После второго запроса матрица будет такой:
.  .  #
# .  .
# # #
Из точки 1;1 в 2;3 есть проход, следовательно, выводим “Yes”. Выделен путь, по которому мы сможем идти.

(с) Всеволод Шалдин
 

Банкет

Обход в глубину

На банкет были приглашены N Очень Важных Персон (ОВП). Были поставлены 2 стола. Столы достаточно большие, чтобы все посетители банкета могли сесть за любой из них. Проблема заключается в том, что некоторые ОВП не ладят друг с другом и не могут сидеть за одним столом. Вас попросили определить, возможно ли всех ОВП рассадить за двумя столами.
 
Входные данные: В первой строке входных данных содержатся два числа: N и M (1 <= N,M <= 100), где N – количество ОВП, а M – количество пар ОВП, которые не могут сидеть за одним столом. В следующих M строках записано по 2 числа – пары ОВП, которые не могут сидеть за одним столом.
 
Выходные данные: Если способ рассадить ОВП существует, то  выведите YES в первой строке и номера ОВП, которых необходимо посадить за первый стол, во второй строке. В противном случае в первой и единственной строке выведите NO.

Примеры
Входные данные Выходные данные
1
3 2
1 2
1 3
YES
1

Обход графа. Компонента связности

Обход в глубину

Дан неориентированный невзвешенный граф. Для него вам необходимо найти количество вершин, лежащих в одной компоненте связности с данной вершиной (считая эту вершину).

Входные данные: В первой строке входных данных содержатся два числа: N и S (1 ≤ N ≤ 100; 1 ≤ S ≤ N), где N – количество вершин графа, а S – заданная вершина. В следующих N строках записано по N чисел – матрица смежности графа, в которой 0 означает отсутствие ребра между вершинами, а 1 – его наличие. Гарантируется, что на главной диагонали матрицы всегда стоят нули.

Выходные данные: Выведите одно целое число – искомое количество вершин.

Примеры

Входные данные Выходные данные
1 3 1
0 1 1
1 0 0
1 0 0
3

Поиск циклов в графе

Обход в глубину

Дан ориентированный невзвешенный связный граф. Требуется определить, содержит ли он циклы.
 
Входные данные: Первая строка содержит одно натуральное число n — количество вершин (0 ≤ n ≤ 1 111).
Следующие n строк содержат матрицу смежности графа. Если в позиции (i, j) квадратной матрицы стоит единичка, то i-ый и j-ый ребра соединены ребрами, а если нолик, то не соединены. При этом ребро направленно из i-ого в j-ое ребро графа, и j-ое и i-ое ребро не соеденены ребрами.
 
Выходные данные: Первая строка должна содержать YES, если граф содержит цикл и NO — в противном случае.

Примеры
Входные данные Выходные данные
1
8
0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
YES

 

Топологическая сортировка

Обход в глубину

Дан ориентированный невзвешенный граф. Необходимо его топологически отсортировать.

Входные данные: В первой строке содержатся два натуральных числа n и m (1≤n≤105, 1≤m≤105) — количество вершин и рёбер в графе соответственно. Далее в m строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

 
Выходные данные: Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, требуется вывести −1.
В первой строке дано кол-во вершин N и ребер M. 

Примеры
Входные данные Выходные данные
1 4 4
1 4
4 3
4 2
3 2
1 4 3 2

Компоненты связности

Обход в глубину

В неориентированном графе посчитать количество компонент связности. В графе могут быть петли и кратные ребра.
 
Входные данные: В первой строке записаны сначала два числа N и M, задающие соответственно количество вершин и количество ребер (1<=N<=100, 0<=M<=10000), а затем перечисляются ребра. Каждое ребро задается двумя номерами вершин, которые оно соединяет
 
Выходные данные: Выведите одно число - количество компонент связности
 
Примеры
Входные данные Выходные данные
1
3 4
1 1
1 2
1 3
2 3
1
2
5 3
1 1
1 2
2 1
4
3 5 0 5