Условие задачи | | Прогресс |
Темы:
Вывод формулы
Денис тоже решил заняться производством и продажей спиннеров, но он считает, что у спиннера может быть только три или четыре лопасти. У него есть ровно M лопастей, которые он может прикреплять к основаниям, и неограниченный запас оснований. Он хочет изготовить несколько трёхлопастных и несколько четырёхлопастных спиннеров так, чтобы использовать все M лопастей. Определите, сколько спиннеров каждого вида он должен произвести.
Программа получает на вход одно целое положительное число M, не превосходящее 2×109
, – количество лопастей, которое есть у Дениса.
Программа должна вывести два целых числа – количество спиннеров с 3 лопастями и количество спиннеров с 4 лопастями, которые должен произвести Денис. Если у задачи есть
несколько решений, нужно вывести любое из них. Если Денис не может использовать ровно M лопастей для производства спиннеров, программа должна вывести два числа 0.
Ввод |
Вывод |
Примечание |
10 |
2
1 |
10 = 3 × 2 + 4 × 1 |
1 |
0
0 |
Невозможно произвести спиннеры так, чтобы
суммарное число лопастей было равно 1.
|
| |
|
Темы:
Вывод формулы
Лёлик решил провести у себя в школе олимпиаду. Для этого ему необходимо закупить много упаковок бумаги. Лёлику очень повезло, потому что один крупный канцелярский магазин объявил две рекламных акции: «купи A одинаковых товаров и получи еще один товар бесплатно», а также «купи B товаров по цене B-1 товара».
Лёлик узнал, что одна пачка бумаги в этом магазине стоит n рублей. Теперь он хочет определить сколько упаковок бумаги он сможет купить на p рублей. Помогите ему.
Формат ввода
На вход подаются четыре натуральных числа, разделенных пробелом: A, B, p и n (1 ≤ A ≤ 100, 2 ≤ B ≤ 100, 1 ≤ p, n ≤ 10000).
Формат вывода
Выведите единственное целое число — максимальное количество упаковок бумаги, которое сможет купить Лёлик.
Пример
Ввод |
Вывод |
4 4 13 2 |
8 |
3 4 8 3 |
2 |
3 4 7 1 |
9 |
Примечания
В первом примере, дважды используя вторую акцию, можно купить 8 упаковок бумаги, заплатив за 6.
Во втором примере акциями воспользоваться нельзя.
В третьем примере можно по одному разу воспользоваться каждой из двух акций и на оставшийся рубль купить еще одну упаковку бумаги.
| |
|
Темы:
Вывод формулы
Болик решает логическую задачу. Для ее решения, он сначала сделал N базовых предположений. После этого происходит следующий процесс: Холмс разбивает все предположения на пары, из каждой пары отбрасывает наименее вероятное предположение (предположения таковы, что всегда есть наименее вероятное). Если получилось так, что какому-то предположению, пары не хватило, то Болик оставляет его для рассмотрения. Алгоритм повторяется пока у Болика не останется последнее предположение.
Болик также привык считать количество логических выводов, которое он сделал. Так, например, если рассматриваются 11-ое и 31-ое предположение и отбрасывается 11-ое, то Болик совершил один логический вывод. Если, например, 238-ому предположению не хватило пары, то Болик оставляет его для рассмотрения, но, конечно, не считает это действие за логический вывод. Более того, последний вывод Болик проверяет дважды.
Теперь Болик хочет понять по имеющемуся количеству базовых предположений сколько ему предстоит сделать логических выводов.
Формат ввода
На вход подается натуральное число N (1 ≤ N ≤ 10218) — количество базовых предположений.
Формат вывода
Выведите единственное целое число — количество логических выводов.
Пример
| |
|
Темы:
Вывод формулы
В городе, в котором живут друзья Андрей и Борис, метро состоит из единственной кольцевой линии, вдоль которой на равном расстоянии друг от друга расположены n станций, пронумерованных от 1 до n. Участок линии метро между двумя соседними станциями называется перегоном.
Поезда по кольцевой линии двигаются как по часовой стрелке, так и против часовой стрелки, поэтому чтобы добраться от одной станции до другой, пассажир может выбрать то направление, в котором требуется проехать меньше перегонов. Минимальное число перегонов, которое необходимо проехать, чтобы добраться от одной станции до другой, назовем расстоянием между станциями.
Друзья заметили, что выполняется следующее условие: если загадать некоторую станцию X и выписать для нее два числа: Da — расстояние от станции, на которой живет Андрей, до станции X и Db — расстояние от станции, на которой живет Борис, до станции X, то полученная пара чисел [Da, Db] будет однозначно задавать станцию X.
Например, если n = 4, Андрей живет на станции 1, а Борис живет на станции 2, то станция 1 задается парой [0, 1], станция 2 — парой [1, 0], станция 3 — парой [2, 1] и станция 4 — парой [1, 2].
Их одноклассник Сергей живет в соседнем городе и не знает, на каких станциях живут Андрей и Борис. Чтобы найти друзей, он заинтересовался, сколько существует вариантов пар станций A, B, таких что если Андрей живет на станции A, а Борис — на станции B, то выполняется описанное выше условие.
Требуется написать программу, которая по числу станций n на кольцевой линии определяет искомое количество вариантов.
Формат входного файла
Первая строка входного файла содержит одно целое число n (3 ≤ n ≤ 40 000).
Формат выходного файла
Выходной файл должен содержать одно число — искомое количество вариантов.
Примеры входных и выходных файлов
Пояснения к примерам
В первом примере подходят следующие варианты:
- Андрей живет на станции 1, а Борис на станции 2;
- Андрей живет на станции 1, а Борис на станции 4;
- Андрей живет на станции 2, а Борис на станции 1;
- Андрей живет на станции 2, а Борис на станции 3;
- Андрей живет на станции 3, а Борис на станции 2;
- Андрей живет на станции 3, а Борис на станции 4;
- Андрей живет на станции 4, а Борис на станции 1;
- Андрей живет на станции 4, а Борис на станции 3.
| |
|
Темы:
Вывод формулы
Для проведения церемонии открытия олимпиады по информатике организаторы осуществляют поиск подходящего зала. Зал должен иметь форму прямоугольника, длина каждой из сторон которого является целым положительным числом.
Чтобы все участники церемонии поместились в зале, и при этом он не выглядел слишком пустым, площадь зала должна находиться в пределах от A до B квадратных метров, включительно.
Чтобы разместить на стенах зала плакаты, рассказывающие об успехах школьников на олимпиадах, но при этом не создать ощущения, что успехов слишком мало, периметр зала должен находиться в пределах от C до D метров, включительно.
Прежде чем сделать окончательный выбор, организаторы олимпиады решили просмотреть по одному залу каждого подходящего размера. Залы с размерами Y × Z и Z × Y считаются одинаковыми. Чтобы понять необходимый объем работ по просмотру залов организаторы задались вопросом, сколько различных залов удовлетворяют приведенным выше ограничениям. Требуется написать программу, которая по заданным A, B, C и D определяет количество различных залов, площадь которых находится в пределах от A до B, а периметр — от C до D, включительно.
Формат входного файла
Входной файл содержит четыре разделенных пробелами целых числа: A, B, C и D (1<=A<=B<=109 , 4<=C<=D<=109 ).
Формат выходного файла
Выходной файл должен содержать одно число — искомое количество залов.
Ввод:
2 10 4 8
Вывод:
3
Пояснения к примеру
В примере ограничениям удовлетворяют залы следующих размеров: 1 × 2, 1 × 3, 2 × 2
| |
|
Темы:
Вывод формулы
Как известно, комета Бармалея видна с Земли каждые C лет. Любопытно, что это происходит в годы, кратные C, т.е. C, 2×C, 3×C и т.д. Не каждому суждено увидеть эту комету хотя бы однажды в жизни. Впрочем, находятся счастливые долгожители, заставшие её прилёт даже несколько раз.
Считается, что впервые эту комету увидел и документировал знаменитый средневековый астроном Бармалео Бармалей. В честь него она и получила своё имя. Говорят, за свою долгую жизнь он успел сделать много великих открытий в самых разных областях науки. Однако недавно историки засомневались, правда ли все открытия, которые ему приписываются, Бармалео Бармалей сделал сам. В частности, они заинтересовались, сколько раз за свою жизнь учёный мог видеть комету, названную в его честь.
Бармалео Бармалей родился 1 января в год A и умер 31 декабря в год B. Сколько раз за его жизнь комета была видна с Земли? Мы считаем, что он мог видеть комету, даже будучи младенцем или глубоким стариком, т.е. если она прилетала в год A или B.
Программа получает на вход три целых числа A, B и C (1 ≤ A ≤ B ≤ 2×109 , 1 ≤ C ≤ 2×109 ) и должна вывести одно целое число – количество раз, которое комета была
видна между годами A и B включительно.
Ввод |
Вывод |
Примечание |
1850
1900
50
|
2 |
Комета пролетала около Земли в 1850 и 1900 годах. Бармалео Бармалей застал оба раза. |
| |
|
Темы:
Вывод формулы
Выборы президента США проходят по непрямой схеме. Упрощённо схема выглядит так. Сначала выборы проходят по избирательным округам, на этих выборах голосуют избиратели (то есть все граждане, имеющие право голоса). Затем голосование проходит в коллегии выборщиков, на этих выборах каждый избирательный округ представлен одним выборщиком, который голосует за кандидата, победившего на выборах в данном
избирательном округе. Кандидатов в президенты несколько, но реально борьба разворачивается между двумя кандидатами от основных партий, поэтому для победы в выборах кандидату нужно обеспечить строго больше половины голосов в коллегии выборщиков. Но для того, чтобы выборщик проголосовал за данного кандидата, необходимо, чтобы в его избирательном округе этот кандидат также набрал строго больше половины
голосов избирателей. Известны случаи (например, в 2016 году), когда из-за такой непрямой избирательной системы в выборах побеждал кандидат, за которого проголосовало меньше избирателей, чем за другого кандидата, проигравшего выборы.
Пусть коллегия выборщиков состоит из N человек, то есть имеется N избирательных округов. Каждый избирательный округ, в свою очередь, состоит из K избирателей. Определите наименьшее число избирателей, которое могло проголосовать за кандидата, одержавшего победу в выборах.
Программа получает на вход два целых числа N и K (1 ≤ N ≤ 10 3 , 1 ≤ K ≤ 10 6 ) и должна вывести одно целое число – искомое количество избирателей.
Ввод |
Вывод |
Примечание |
5
3 |
6 |
Чтобы данный кандидат получил большинство в коллегии
выборщиков, необходимо, чтобы 3 из 5 выборщиков
проголосовали за него, то есть кандидат должен одержать
победу в 3 округах. Каждый округ состоит из 3 избирателей,
поэтому для победы в округе необходимо набрать 2 голоса
в данном округе.
|
| |
|
Темы:
Вывод формулы
Ученые планируют провести важный эксперимент с использованием исследовательского модуля
на планете X-2019. В процессе эксперимента будет проведено два измерения: основное и контрольное.
Каждое измерение занимает ровно один час и должно начинаться спустя целое число часов после
начала работы исследовательского модуля.
Данные эксперимента планируется немедленно передать на орбитальную станцию. Канал связи
с орбитальной станцией будет установлен с l-го по r-й час от начала работы исследовательского модуля, включительно. Кроме того, согласно плану эксперимента между измерениями планета
должна совершить целое число оборотов вокруг своей оси. Планета X-2019 осуществляет оборот
вокруг своей оси за a часов.
Таким образом, если измерения осуществляются на i-м и j-м часу, то должно выполняться неравенство l <= i < j <= r, а величина (j − i) должна быть кратна a. Теперь учёным необходимо понять,
сколько существует различных способов провести измерения.
Требуется написать программу, которая по заданным границам времени измерений l и r и периоду обращения планеты вокруг своей оси a определяет количество возможных способов провести
измерения: количество пар целых чисел i и j, таких что l <= i < j <= r, и величина (j − i) кратна a.
Формат входных данных
Входные данные содержат три целых числа, по одному на строке: l, r и a (1 <= l < r <= 109,1 <= a <= 109).
Формат выходных данных
Выведите одно целое число: количество способов провести измерения.
Ввод |
Вывод |
1
5
2 |
4 |
4
9
6 |
0 |
Пояснения к примерам
В первом примере можно провести измерения в следующие пары часов: (1, 3), (1, 5), (2, 4), (3, 5).
Во втором примере продолжительности работы канала связи недостаточно, чтобы провести два
измерения.
| |
|
Темы:
Вывод формулы
Саша совсем не любит спиннеры, поэтому он рисует в тетрадке. Он взял тетрадный лист из N × M клеточек и пронумеровал все клетки различными числами. Теперь ему стало интересно, сколько различных прямоугольников он может вырезать из этого листа бумаги по границам клеточек.
Программа получает на вход два числа N и M – размеры исходного листа. Все числа – целые положительные, не превосходящие 75000.
Программа должна вывести одно число – количество прямоугольников, которые можно вырезать из данного листа бумаги (весь лист целиком также считается одним из возможных прямоугольников).
Ввод |
Вывод |
Примечание |
2
2 |
9 |
 |
3
1 |
6 |
 |
| |
|
Темы:
Вещественные числа
Вывод формулы
Напишите программу, которая вычисляет значение y .
\(y = \frac a {b \cdot c}\)
Входные данные
На вход подаются 3 целых числа a , b , c (b, с > 0).
Выходные данные
Выведите значение y .
Пример
№ |
Входные данные |
Выходные данные |
1 |
4 2 3 |
0.67 |
2 |
1 2 1 |
0.5 |
| |
|
Темы:
Вывод формулы
Вещественные числа
Напишите программу, которая вычисляет значение y .
\(y = 5.45 \cdot \frac {a + 2 \cdot b} {2-a}\)
Входные данные
На вход подается 2 целых числа a (a>2) и b .
Выходные данные
Выведите значение y .
Примеры
№ |
Входные данные |
Выходные данные |
1 |
4 2 |
-21.80 |
2 |
1 2 |
27.25 |
| |
|
Темы:
Вещественные числа
Вывод формулы
Напишите программу, которая вычисляет значение y .
\(y = \frac {a + b} {2}\)
Входные данные
На вход подается 2 целых числа a и b .
Выходные данные
Выведите значение y .
Примеры
№ |
Входные данные |
Выходные данные |
1 |
2 2 |
2 |
2 |
1 2 |
1.5 |
| |
|
Темы:
Вещественные числа
Вывод формулы
Напишите программу, которая вычисляет значение y .
\(y = \frac {-1} {x^2}\)
Входные данные
На вход подается целое число x (x > 0).
Выходные данные
Выведите значение y .
Примеры
№ |
Входные данные |
Выходные данные |
1 |
2 |
-0.25 |
2 |
1 |
-1 |
| |
|
Темы:
Целые числа
Вывод формулы
Обувная фабрика собирается начать выпуск элитной модели ботинок. Дырочки для шнуровки будут расположены в два ряда, расстояние между рядами равно a, а расстояние между дырочками в ряду b. Количество дырочек в каждом ряду равно N. Шнуровка должна происходить элитным способом “наверх, по горизонтали в другой ряд, наверх, по горизонтали и т.д.” (см. рисунок). Кроме того, чтобы шнурки можно было завязать элитным бантиком, длина свободного конца шнурка должна быть l. Какова должна быть длина шнурка для этих ботинок?
Запрещено использовать операторы if, while, for, repeat-until (Паскаль)

Входные данные: Программа получает на вход четыре натуральных числа a, b, l и N.
Выходные данные: Программа должна выводить одно число – искомую длину шнурка.
Примеры
входные данные
2
1
3
4
выходные данные
26
| |
|
Темы:
Вывод формулы
Целые числа
По одну сторону улицы находятся дома с нечётными номерами (1, 3, 5, …), по другую сторону – с чётными (2, 4, 6, …). Дом № 1 находится напротив дома № 2, дом № 3 – напротив дома № 4 и т. д. До соседнего дома нужно идти вдоль по улице одну минуту, неважно, с какой стороны улицы он находится (то есть от дома № 1 нужно идти одну минуту как до дома № 3, так и до дома № 4). До дома, стоящего напротив, идти не нужно.

Громозека вышел на улицу из дома номер A и должен дойти до дома номер B. Определите, сколько минут ему нужно идти вдоль по улице.
Запрещено использовать какие-либо алгоритмические конструкции для решения данной задачи. Можно использовать только арифметические операции (без использования встроенных функций).
Входные данные
Программа получает на вход два различных целых положительных числа A и B,не превосходящие 2×109, – номера домов.
Выходные данные
Программа должна вывести одно число – искомое количество минут.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
1
8 |
3 |
| |
|
Темы:
Вывод формулы
С клавиатуры вводятся два целых числа - катеты прямоугольного треугольника. Напишите программу определения периметра такого треугольника.
Пример
№ |
Входные данные |
Выходные данные |
1 |
3 4 |
12.000000 |
| |
|
Темы:
Вывод формулы
С клавиатуры вводятся два целых числа - катеты прямоугольного треугольника. Напишите программу определения гипотенузы такого треугольника.
Пример
№ |
Входные данные |
Выходные данные |
1 |
3 4 |
5.000000 |
| |
|
Темы:
Вывод формулы
С клавиатуры вводятся два целых числа - стороны прямоугольника. Напишите программу нахождения его периметра и длины диагонали. Выведите в первой строке периметр прямоугольника, во второй строке - длину его диагонали.
Пример
№ |
Входные данные |
Выходные данные |
1 |
2 13 |
30
13.152946 |
| |
|
ID 31924.
Лифт
Темы:
Вывод формулы
Условный оператор
Петру необходимо попасть с этажа A на этаж B. Для вызова лифта на всех этажах офисного здания, кроме первого и последнего, есть две кнопки – для перемещения вниз и перемещения вверх. В тот момент, когда Петр нажал нужную кнопку вызова, лифт находился на этаже C и вез одного пассажира на этаж D. Если лифт проезжает мимо этажа, на котором нажата кнопка вызова, и лифт движется в подходящем направлении, то лифт останавливается, чтобы посадить дополнительного пассажира. Лифт перемещается между соседними этажами за одну единицу времени, также одну единицу времени занимает остановка лифта на этаже для высадки или посадки пассажиров.
Напишите программу, вычисляющую, через сколько времени Петр доберется до этажа B, при условии, что никто больше не будет вызвать лифт.
Первая строка ввода содержит четыре целых числа A, B, C и D, разделенных одним пробелом (1 ≤ A, B, C, D ≤ 20, A≠B, C≠D, A≠C).
Вывести одно целое число – количество единиц времени от момента вызова лифта до момента, когда Петр выйдет из лифта на этаже B.
Ввод |
Вывод |
3 9 2 5 |
10 |
3 9 5 2 |
13 |
Примечание:
Пояснение к примеру 1
Лифт за 1 единицу времени доедет до 3-го этажа, остановится на 1 единицу времени, чтобы Петр сел в лифт, затем через 2 единицы времени доедет до 5-го этажа и остановится на 1 единицу времени для высадки предыдущего пассажира, через 4 единицы времени лифт довезет Петра до 9-го этажа, и через 1 единицу времени Петр выйдет из лифта.
| |
|
Темы:
Вывод формулы
Целые числа
Королевская кухня покрыта кухонным фартуком, который разбит на квадраты со стороной A см. Роланд хочет повесить на фартук картину с изображением своей семьи. Он знает точку, с которой соприкасается левый нижний угол картины, а также ширину и высоту самой картины. И тут ему захотелось узнать количество квадратов, которые будут частично или полностью закрыты картиной.
Входные данные
Первая строка содержит число A – сторону одного квадрата кухонного фартука. Вторая и третья строки - числа X и Y – координаты левого нижнего угла картины. Четвёртая и пятая строки - числа W и H – ширина и высота картины. Ось OX направлена вправо, ось OY направлена вверх. Левый нижний угол одного из квадратов кухонного фартука находится в начале координат. Все числа целые, не превосходящие 2×109 , числа A , W , H – положительные, числа X и Y – положительные или равны 0.
Выходные данные
Вывести одно число – количество плиток, полностью или частично закрытых картиной.
Квадрат считается закрытым картиной, если пересечение картины и квадрата имеет ненулевую площадь, то есть касание картины и квадрата не считается перекрытием.
Примеры
№ |
Входные данные |
Выходные данные |
1
|
10
15
5
35
20
|
12
|
Примечание
Сторона квадрата (сторона клетки на рисунке) А = 10.
Левый нижний угол картины имеет координаты (15, 5), картина имеет ширину 35 см и высоту 20 см.
Картина полностью или частично закрывает 12 квадратов
| |
|
Темы:
Вывод формулы
Целые числа
В школе № 2007 на уроке информатики в системе SilverTests Васе попалась следующая задача: «В младшей группе одного объединённого детского сада воспитательница изучала с детишками порядок цветов радуги. Она отыскала семь соответствующих цветных мелков и начала рисовать полоски, не нарушая последовательности цветов. Начала она с красной полоски. Когда доходила до фиолетовой полоски, опять рисовала красную. Воспитательница успела нарисовать N полосок, когда у неё закончились мелки. Напишите программу, которая вычисляет количество полосок каждого цвета». Вася взялся писать программу, но тут обнаружилось, что на клавиатуре отсутствует клавиша с буквой «i». Помогите Васе написать программу с учётом этого обстоятельства.
Входные данные: Вводится одно целое положительное число N > 0.
Выходные данные: Выведите ответ на задачу.
Если в коде программы встречается буква «i» система выдаст сообщение: Использование запрещенных операторов
Примеры
№ |
Входные данные |
Выходные данные |
1 |
3 |
'red - 1'
'orange - 1'
'yellow - 1'
'green - 0'
'blue - 0'
'sky - 0'
'purple - 0' |
| |
|
Темы:
Вывод формулы
На вход программе подаются два целых числа n , m , каждое в отдельной строке \(0<n<=12, 0<=m<60\) , указывающие момент времени "n часов m минут". Определите наименьшее число полных минут, которое должно пройти до того момента, когда часовая и минутная стрелки ни циферблате совпадут, не обязательно на каком-то делении. Вещественную арифметику не использовать.
Задачу необходимо решить без использования условных операторов (в том числе без тернарного оператора ?: в С++) и\или циклов. Кроме того, нельзя использовать операции сравнения и логический (булевский) тип данных.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
2
50 |
26 |
2 |
3
0 |
16 |
| |
|
Темы:
Вывод формулы
Маша любит чётные числа, а Миша – нечётные. Поэтому они всегда радуются, если встречают числа, которые им нравятся.
Сегодня им встретились все целые числа от A до B включительно. Маша решила посчитать сумму всех чётных чисел от A до B, а Миша – сумму всех нечётных, после чего они начали спорить, у кого получилась сумма больше. Помогите им – найдите разность
между суммой Маши и суммой Миши.
Программа получает на вход два целых положительных числа A и B, не превосходящие 2×109.
Программа должна вывести одно число – разность между суммой чётных чисел и суммой нечётных чисел от A до B.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
3
6 |
2 |
Сумма чётных чисел равна 4 + 6 = 10, сумма нечётных чисел
равна 3 + 5 = 8, разность равна 2. |
2 |
3
7 |
-5 |
Сумма чётных чисел равна 4 + 6 = 10, сумма нечётных чисел
равна 3 + 5 + 7 = 15, разность равна −5. |
| |
|
Темы:
Вывод формулы
Ручка стоила K рублей. Первого сентября стоимость ручки увеличилась ровно на P процентов. Определите, сколько ручек можно купить на S рублей после подорожания.
Программа получает на вход три целых положительных числа. Первое число K – стоимость ручки в рублях до подорожания. Второе число P – величина подорожания ручки
в процентах. Третье число S – имеющаяся сумма денег. Числа K и S не превосходят 107 , число P не превосходит 100.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
33
5
100 |
2 |
Ручка стоила 33 рубля. После подорожания на 5 % ручка будет стоить 34 рубля 65 копеек (заметим, что, поскольку первоначальная
цена ручки была целым числом рублей, после подорожания стоимость ручки будет выражаться целым числом рублей и копеек).
На 100 рублей после подорожания можно купить 2 ручки. |
| |
|
Темы:
Вывод формулы
Вам даны неотрицательные целые числа a и b (a<=b) и положительное целое число x . Сколько целых чисел от a до b включительно делятся на x ?
Входные данные
В одной строке задаются три числа a, b и x (\(0<=a<=b<=10^{18}\), \(1<=x<=10^{18}\)).
Выходные данные
Выведите на экран ответ на задачу.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
4 8 2 |
3 |
Есть три целых числа от 4 до 8 включительно, которые делятся на 2: 4, 6 и 8. |
2 |
0 5 1 |
6 |
Есть шесть целых чисел от 0 до 5 включительно, которые делятся на 1: 0, 1, 2, 3, 4 и 5. |
3 |
9 9 2 |
0 |
Нет целого числа от 9 до 9 включительно, которое делится на 2. |
4 |
1 1000000000000000000 3 |
333333333333333333 |
Остерегайтесь целочисленных переполнений! |
| |
|
Темы:
Вывод формулы
Целые числа
Черепашка ползет по полу, который уложен квадратной плиткой со стороной A см. Начало пути Черепахи в точке X . Черепашка успела проползти расстояние D см, прежде чем хозяин взял ее на руки. Определите сколько клеток (частично или целых) успела проползти Черепашка.
Входные данные
Первая строка содержит число A – длина стороны одной плитки. Вторая строка содержит число X - координата точки, с которой Черепашка начала свой путь. Третья строка - число D - расстояние, которое проползла Черепаха. Ось OX направлена вправо. Крайняя плитка в ряду, по которому ползет Черепашка находится в начале координат. Все числа целые, не превосходящие \(2\cdot10^9 \), числа A , D – положительные, число X – положительное или равно 0 .
Выходные данные
Вывести одно число – количество плиток, которые Черепашка полностью или частично успела проползти.
Считается, что Черепашка проползла плитку, если условно проведенная линия пути Черепашки имеет ненулевую длину, то есть касание линии пути и края плитки не считается.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
10
15
35 |
4 |
Сторона плитки (сторона клетки на рисунке) А = 10.
Черепашка начала движение с координаты Х = 15, и прошла 35.
Черепаха прошла полностью или частично 4 плитки.
 |
| |
|
Темы:
Целые числа
Вывод формулы
Громозека любит соревнования по программированию. Сегодня он примет участие в конкурсе в STCoder. На этой площадке используются 24-часовые часы. Например, 21:00. обозначается как «21 o'clock».
Текущее время - A часов, а соревнование начнется ровно через B часов. Определите время начала соревнования? Ответ дайте в 24-часовом формате.
Входные данные
Во входной строке содержится два целых числа A и B (\(0<=A,B<=23\)), записанных через один пробел.
Выходные данные
Выведите час начала конкурса в 24-часовом формате.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
9 12 |
21 |
2 |
19 0 |
19 |
3 |
23 2 |
1 |
| |
|
Темы:
Вывод формулы
Имеется последовательность длины N : A1 , A2 , ..., AN . Изначально эта последовательность представляет собой перестановку 1, 2, ..., N. В этой последовательности Алиса может выполнить следующую операцию:
1) выбрать K последовательных элементов в последовательности;
2) затем заменить значение каждого выбранного элемента минимальным значением среди выбранных элементов.
Алиса хочет уравнять все элементы в этой последовательности, повторяя указанную выше операцию некоторое количество раз.
Найдите минимальное количество необходимых операций.
Можно доказать, что при ограничениях этой проблемы эта цель всегда достижима.
Входные данные
В первой строке задаются два целых числа N и K (2<=K<=N<=100000). Во второй строке задается последовательность целых чисел A1 , A2 , ..., AN - перестановка чисел от 1 до N (каждое число в последовательности различно, 1<=Ai<=N).
Выходные данные
Выведите минимальное количество необходимых операций.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
4 3
2 3 1 4 |
2 |
2 |
3 3
1 2 3 |
1 |
3 |
8 3
7 3 1 8 4 6 2 5 |
4 |
| |
|
Темы:
Вывод формулы
Незнайка тренировался у Торопыжки быстрее ходить. До тренировки он проходил путь длиной S метров за t1 секунд. После тренировки скорость Незнайки увеличилась на P% . Напишите программу, которая определяет, какой путь (в метрах) будет проходить Незнайка за t2 секунд после тренировки с Торопыжкой.
Входные данные
На вход четыре целых числа: S (1<=S<=100), t1 (1<=t1<=100), P (1<=P<=100) и t2 (1<=t2<=100).
Выходные данные
Выведите одно число - ответ на задачу.
Пример
№ |
Входные данные |
Выходные данные |
1 |
20 5 40 10 |
56.0 |
| |
|
Темы:
Вывод формулы
Винтик и Шпунтин тестировали новые автомобили. Расстояние вокруг Цветочного города автомобиль Винтика проехал за t1 секунд, спидометр всю дорогу показывал скорость V м/с. Автомобиль Шпунтика такое же расстояние вокруг Цветочного города прошел за t2 секунд, при этом спидометр у Шпунтика был сломан. Помогите Шпунтику определить с какой скоростью (в м/с) он ехал.
Входные данные
На вход 3 целых числа: t1 (1<=t1<=100), V (1<=V<=100) и t2 (1<=t2<=100).
Выходные данные
Выведите одно число - ответ на задачу.
Пример
№ |
Входные данные |
Выходные данные |
1 |
10 12 15 |
8.0 |
| |
|
Темы:
Вывод формулы
Незнайка и его друг Гунька играют в игру. Игра состоит из N ходов. На каждом ходу каждый игрок играет одним из двух жестов, Камень и Бумага, как в «Камень-ножницы-бумага», при следующих условиях:
- После каждого хода
(количество раз, когда игрок играл Бумагу) <= (количество раз, когда игрок играл Камень).
- Счет каждого игрока рассчитывается по формуле:
(количество ходов, на которых игрок выигрывает) - (количество ходов, на которых игрок проигрывает),
где результат каждого хода определяется по правилам «камень-ножницы-бумага».
Для тех, кто не знаком с игрой "Камень-нужница-бумага": если один игрок играет Камень, а другой играет Бумагу, последний игрок выиграет, а первый проиграет. Если оба игрока играют одним и тем же жестом, раунд считается ничейным, и ни один из игроков ни выиграет ни проиграет.
Используя волшебную палочку Незнайка смог предвидеть жест, который Гунька будет использовать в каждом из N ходов перед началом игры. Распланируйте жесты Незнайки на каждом шагу, чтобы максимизировать его счет.
Жест, который Гунька будет воспроизводить на каждом ходу, задается строкой s . Если i -й (1 <= i <= N) символ в s равен g , то Гунька будет играть "Камень" на i -м ходу. Аналогично, если i -й (1 <= i <= N) символ s в p , Гунька будет играть Бумага на i -м ходу.
Входные данные
На вход подается одна строка s длиной N. Каждый символ в строке s - это g или p . Жесты, представленные s , удовлетворяют условию игры.
Выходные данные
Выведите максимально возможный счет Незнайки.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
gpg |
0 |
Выполнение одного и того же жеста с противником на каждом этапе дает 0 очков, что является максимально возможным результатом. |
2 |
ggppgggpgg |
2 |
Например, рассмотрите возможность воспроизведения жестов в следующем порядке: Камень, Бумага, Камень, Бумага, Камень, Камень, Бумага, Бумага, Камень, Бумага. Эта стратегия приносит три победы и одно поражение, в результате чего получается 2, что является максимально возможным результатом. |
| |
|
Темы:
Вывод формулы
Клетчатое поле состоит из белых клеток. Размер поля - H строк и W столбцов. Вам необходимо выбрать h строк и w столбцов и закрасить все ячейки, содержащиеся в этих строках или столбцах. Сколько белых клеток останется после закрашивания?
Входные данные
В первой строке записаны 2 числа: H и W (1 <= H, W <= 20). Во второй строке записаны 2 числа: h и w (1 <= h <= H, 1 <= w <= W).
Выходные данные
Выведите ответ на задачу.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
3 2
2 1 |
1 |
2 |
5 5
2 3 |
6 |
3 |
2 4
2 4 |
0 |
| |
|
Темы:
Обход в глубину
Вывод формулы
Новый амбар Фермера Джона состоит из N комнат (2 ≤ N ≤ 2500), последовательно пронумерованных 1…N, и N−1 коридоров. Каждый коридор соединяет пару комнат таким образом, что возможно пройти из лбой комнаты в любую через серию коридоров.
Каждая комната в амбаре имеет круглые часы на стене со стандартным размещением цифр 1…12 на лицевой стороне. Однако на этих часах имеется только одна стрелка, которая всегда показывает точно на одно из целых чисел (она никогда не показывает между двумя из этих чисел).
Корова Беси хочет синхронизировать все часы в амбаре, чтобы они все показывали на число 12. Но со своим коровьим мышлением, каждый раз, когда она входит в комнату, она перемещает стрелку вперёд на одну позицию. Например, если стрека показывала на 5, Беси переводит стрелку на 6. Если часы указывали на 12, она переводит стрелку на 1. Если Беси входит в комнату несколько раз, она переводит стрелку при каждом входе.
Определите номера комнат, в которых Беси может начинать путешествие по амбару чтобы установить все стрелки на 12. Заметим, что Беси не переводит стрелку в стартовой комнате в начале пути и переводит при каждом последующем входе в неё. Стрелки сами по себе не двигаются. Беси входя в коридор должна дойти до конца и войти в комнату в конце коридора. Она не может повернуть назад внутри коридора, чтобы снова войти в комнату из которой вышла.
Входные данные
Первая строка ввода содержит N. Следующая строка содержит N целых чисел, каждое в интервале 1…12, указывающих начальные положения стрелок в каждой комнате. Каждая из следующих N−1 строк описывает коридор двумя целыми числам a и b, каждое в интервале 1…N, и задающих номера комнат, соединённых этим коридором.
Выходные данные
Выведите номера комнат, в которых Беси может начинать, чтобы установить все часы на 12.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
4
11 10 11 11
1 2
2 3
2 4
|
1 |
В этом примере Беси может установить все стрелки на 12, тоько в том случае, если она начнёт в комнате 2 (например перемещаясь так: 1, 2, 3, 2, 4. |
| |
|
Темы:
Алгоритмы сортировки
Вывод формулы
Фермер Джон хочет создать треугольное пастбище для своих коров.
Всего имеется N столбов забора (3 ≤ N ≤ 105) как различных (X1,Y1)…(XN,YN) точек на карте фермы. Он может выбрать три из них чтобы сформировать вершины треугольного пастбища, но так чтобы одна из сторон была параллельна оси x, а другая - параллельно оси y.
Какова сумма площадей всех возможных пастбищ, которые может сформировать ФД?
Входные данные
Первая строка содержит N.
Каждая из последующих N строк содержит два целых числа Xi и Yi, каждое в интервале −104…104 включительно, описывающих положение столба.
Выходные данные
Поскольку сумма площадей может быть числом не целым и очень большим, выведите остаток от деления удвоенной суммы площадей на 109+7.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
4
0 0
0 1
1 0
1 2
|
3 |
Точки (0,0), (1,0), (1,2) образуют треугольник с площадью 1.
Точки (0,0), (1,0), (0,1) образуют треугольник с площадью 0.5.
Поэтому ответ 2⋅(1+0.5)=3. |
| |
|
Темы:
Вывод формулы
Быстрое возведение в степень
Перестановки
N коров (1 ≤ N ≤ 105) Фермера Джона стоят в ряд. i-ая корова слева имеет метку i (1 ≤ i ≤ N).
ФД дал коровам M пар целых чисел s (L1,R1)…(LM,RM), где 1 ≤ M ≤ 100. Затем он сказал коровам повторить ровно K (1 ≤ K ≤ 109) раз процесс из M шагов:
Для каждого i от 1 до M:
Последовательность коров на позициях Li…Ri слева реверсивно меняют свой порядок.
Выведите метки всех коров слева направо для каждого i, (1 ≤ i ≤ N) после завершения описанного процесса.
Входные данные
Первая строка содержит числа N, M, K. Для каждого 1 ≤ i ≤ M строка i+1 содержит Li и Ri, два целых числа в интервале 1…N, где Li<Ri.
Выходные данные
На i-ой строке вывода, выведите i-ый элемент массива после выполнения всех инструкций K раз.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
7 2 2
2 5
3 7
|
1
2
4
3
5
7
6
|
Изначально порядок коров слева направо такой [1,2,3,4,5,6,7]
После первого шага процесса порядок станет таким [1,5,4,3,2,6,7]
После второго шага процесса порядок станет таким [1,5,7,6,2,3,4].
Повторив оба шага ещё раз получим результат, приведенный в выводе. |
| |
|
Темы:
Вывод формулы
Перебор
У Фермера Джона есть N коров с пятнами и N коров без пятен. Как генетик, ФД уверен, что пятна на его коровах вызваны мутацией коровьего генома.
За большие деньги ФД выписал геномы своих коров. Каждый геном - это строка длины M, состоящая из четырёх символов A, C, G, T. Когда он выписал геномы всех коров, он получил таблицу, представленную ниже для N=3:
Позиция: 1 2 3 4 5 6 7 ... M
Пятнистая корова 1: A A T C C C A ... T
Пятнистая корова 2: G A T T G C A ... A
Пятнистая корова 3: G G T C G C A ... A
Корова без пятен 1: A C T C C C A ... G
Корова без пятен 2: A G T T G C A ... T
Корова без пятен 3: A G T T C C A ... T
Посмотрев внимательно на эту таблицу он предположил, что позиции 2 и 4 могут отвечать за пятнистость. Поскольку, глядя на символы в этих позициях, ФД может предсказать, какая из его коров пятнистая, а какая - нет (например, если он видит G и С - значит, корова не пятнистая).
ФД предположил, что может быть объяснена множеством из трёх различных позиций. Помогите ему посчитать количество трёх различных позиций, которые могут объяснять пятнистость.
ФОРМАТ ВВОДА:
Первая строка ввода содержит NN (1≤N≤500) и MM (3≤M≤50). Каждая из следующих N строк содержит по M символов. Это описание геномов пятнистых коров. Следующие N строк описывают геномы коров без пятен.
ФОРМАТ ВЫВОДА:
Вычислите количество множеств из трёх различных позиций, которые могут объяснять пятнистость. Множество из трёх различных позиций может объяснять пятнистость, если пятнистость может быть предсказана абсолютно точно для популяции коров ФД, при анализе этих трёх позиций генома.
Ввод |
Вывод |
3 8
AATCCCAT
GATTGCAA
GGTCGCAA
ACTCCCAG
ACTCGCAT
ACTTCCAT
|
22 |
| |
|
Темы:
Вывод формулы
Задача на реализацию
Задачи на моделирование
N коров (1 ≤ N ≤ 100) Фермера Джона выстроены в ряд. i-ая корова слева имеет метку i, для всех 1≤i≤N.
ФД приказал коровам повторить ровно K (1 ≤ K ≤109) раз следующий двухшаговый процесс:
Последовательность коров в позициях A1…A2 слева реверсивно меняют свой порядок (1≤A1<A2≤N).
Затем последовательность коров в позициях B1…B2 слева реверсивно меняют свой порядок (1≤B1<B2≤N).
Выведите получившийся порядок коров для всех i 1 ≤ i ≤ N после выполнения этого процесса ровно K раз.
Входные данные
Первая строка содержит N и K. Вторая строка содержит A1 и A2, третья строка содержит B1 и B2.
Выходные данные
На i-ой строке выведите метку i-ой коровы слева после завершения процесса всех обменов.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
7 2
2 5
3 7
|
1
2
4
3
5
7
6
|
Изначально порядок коров слева направо такой [1,2,3,4,5,6,7]
После первого шага процесса порядок станет таким [1,5,4,3,2,6,7]
После второго шага процесса порядок станет таким [1,5,7,6,2,3,4].
Повторив оба шага ещё раз получим результат, приведенный в выводе. |
| |
|
Темы:
Вывод формулы
Перебор
Фермер Джон хочет создать треугольное пастбище для своих коров.
Всего имеется N столбов забора (3 ≤ N ≤ 100) как различных (X1,Y1)…(XN,YN) точек на карте фермы. Он может выбрать три из них чтобы сформировать вершины треугольного пастбища, но так чтобы одна из сторон была параллельна оси x, а другая - параллельно оси y.
Какова сумма площадей всех возможных пастбищ, которые может сформировать ФД?
Входные данные
Первая строка содержит N.
Каждая из последующих N строк содержит два целых числа Xi и Yi, каждое в интервале −104…104 включительно, описывающих положение столба.
Выходные данные
Поскольку сумма площадей может быть числом не целым и очень большим, выведите остаток от деления удвоенной суммы площадей на 109+7.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
4
0 0
0 1
1 0
1 2
|
3 |
Точки (0,0), (1,0), (1,2) образуют треугольник с площадью 1.
Точки (0,0), (1,0), (0,1) образуют треугольник с площадью 0.5.
Поэтому ответ 2⋅(1+0.5)=3. |
| |
|
Темы:
Строки
Условный оператор
Вывод формулы
Громозека уважает игры на шахматной доске. На обычной доске размером 8х8 у Громозеки стоит голодная пешка. Голодная пешка каждым ходом съедает какую-либо фигуру соперника (т.е. она может пойти по диагонали вперед на 1 клетку вправо или влево, назад пойти она не может). Громозека, не глядя на доску, научился определять, может ли голодная пешка попасть с одной клетки доски на другую. Превращаться в ферзя голодной пешке нельзя.
Напишите программу, с помощью которой вы могли бы также легко проверить Громозеку.
Входные данные
Программа получает на вход две клетки шахматной доски в шахматной нотации. Сначала клетка, где стоит голодная пешка, а затем, через пробел, клетка, куда голодная пешка должна попасть.
Выходные данные
Выведите слово YES (заглавными буквами), если голодная пешка может попасть из первой клетки во вторую, и NO в противном случае.
Доска имеет размер 8x8, вертикали нумеруются маленькими латинскими буквами от a до h, горизонтали - числами от 1 до 8. Исходная и конечная клетки не совпадают.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
a1 b2 |
YES |
2 |
b2 a1 |
NO |
3 |
a1 h7 |
NO |
| |
|
Темы:
Вывод формулы
У Фермера Джона есть N коров (1 ≤ N ≤ 20) с высотами a1…aN. Его амбар имеет N стойл с максимальными высотами b1…bN (поэтому например, b5=17 означает, что коров с высотой не более 17 можно разместить в стойле 5). Сколькими различными способами ФД может разместить коров по стойлам, так чтобы ограничение по высоте было выполнено для каждого стойла.
Входные данные
Первая строка содержит N. Вторая строка содержит N разделённых одиночными пробелами чисел a1, a2,…,aN. Третья строка содержит N разделённых одиночными пробелами чисел b1,b2,…,bN. Все величины - целые числа в интервале [1,109].
Выходные данные
Количество способов, которыми ФД может разместить коров в стойлах, так чтобы для каждого стойла был удовлетворён лимит по высоте. Заметьте, что ответ может быть очень большим, поэтому для него требуется использовать 64-битную целую переменную, такую как "long long" в C++.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
4
1 2 3 4
2 4 3 4
|
8 |
В этом примере мы не можем разместить третью корову в первое стойло, поскольку 3=a3>b1=2. Аналогично, мы не можем разместить 4-ую корову в 1-ое или 3 -е стойло. Один из 8 способов размещения: корову 1 в стойло 1, корову 2 в стойло 2, корову 3 в стойло 3 корову 4 в стойло 4. |
| |
|
Темы:
Вывод формулы
Фермер Джон фотографирует N своих коров (2≤N≤1000).
Каждая корова имеет целое число - "ID породы" в интервале 1…100. ФД разбить всех коров на несвязные группы (другими словами, поместить каждую корову ровно в одну группу) и затем выставить группы так, чтобы сумма "ID породы" коров в первой группе была чётной, во второй - нечётной и т.д., чередуя чётные и нечётные.
Какое максимальное количество групп может сформировать ФД?
Входные данные
Первая строка ввода содержит число N. Следующая строка содержит N разделённых пробелом целых чисел, представляющих "ID породы".
Выходные данные
Максимально возможное количество групп на фото ФД. Можно доказать, что хотя бы одна группа будет всегда.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснения |
1 |
7
1 3 5 7 9 11 13
|
3 |
В этом примере один из способов сформировать максимальное количество (3) групп так:
1 группа: 1 3
2 группа: 5 7 9
3 группа: 11 13 |
2 |
7
11 2 17 13 1 15 3
|
5 |
В этом примере один из способов сформировать максимальное число (5) групп так: 1 группа: 2
2 группа: 11
3 группа: 13 1
4 группа: 15
5 группа: 17 3. |
| |
|
Темы:
Хеш
Вывод формулы
Вам дано t запросов, в каждом из которых вам дана строка s, состоящая из строчных латинских букв, число p и число mod.
Для каждого запроса вычислите полиномиальный хэш с основанием p по модулю mod от строки, являющейся строкой s, где каждая буква продублирована. То есть, если s = "isaac", то нужно посчитать хэш от строки "iissaaaacc".
Входные данные:
В первой строке дается число t - количество запросов.
Далее идет t строк, в каждой из которых через пробел даны s (1 <= |s| <= 20), p (1 <= p <= 105) и mod (1 <= mod <= 108).
Выходные данные:
Выведите ответы на запросы, каждый в отдельной строке.
Пример:
Входные данные |
Выходные данные |
2
isaac 12345 87654321
newton 54321 12345678 |
8829000
9632318 |
| |
|
Темы:
Алгоритм Мо
Вывод формулы
Имеется массив натуральных чисел a1, a2, ..., an. Рассмотрим некоторый его подмассив al, al + 1, ..., ar, где 1 ≤ l ≤ r ≤ n, и для каждого натурального числа s обозначим через Ks число вхождений числа s в этот подмассив. Назовем мощностью подмассива сумму произведений Ks·Ks·s по всем различным натуральным s. Так как количество различных чисел в массиве конечно, сумма содержит лишь конечное число ненулевых слагаемых.
Необходимо вычислить мощности каждого из t заданных подмассивов.
Входные данные
Первая строка содержит два целых числа n и t (1 ≤ n, t ≤ 200000) — длина массива и количество запросов соответственно.
Вторая строка содержит n натуральных чисел ai (1 ≤ ai ≤ 106) — элементы массива.
Следующие t строк содержат по два натуральных числа l и r (1 ≤ l ≤ r ≤ n) — индексы левого и правого концов соответствующего подмассива.
Выходные данные
Выведите t строк, где i-ая строка содержит единственное натуральное число — мощность подмассива i-го запроса.
Примеры:
Входные данные |
Выходные данные |
3 2
1 2 1
1 2
1 3 |
3
6 |
8 3
1 1 2 2 1 3 1 1
2 7
1 6
2 7 |
20
20
20 |
| |
|
Темы:
Целые числа
Вывод формулы
На кафедру "Прикладной информатики" университета N в новом учебном году набрали три группы первокурсников. Для практических занятий необходимо оборудовать новую аудиторию лабораторными столами. За каждым таким столом могут сидеть не более четырех студентов, причем все студенты обязаны быть из одной группы. Аудитория имеет возможность одновременно разместить студентов сразу трех групп одновременно.
Определите минимальное количество столов, которые необходимо закупить.
Входные данные
Программа получает на вход три натуральных числа (по одному числу в строке): количество студентов каждой из трех групп.
Выходные данные
Выведите ответ на задачу.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
15
20
24 |
15 |
| |
|
Темы:
Целые числа
Вывод формулы
Даны значения двух моментов времени, принадлежащих одним и тем же суткам: часы, минуты и секунды для каждого из моментов времени. Известно, что второй момент времени наступил не раньше первого. Определите, сколько секунд прошло между двумя моментами времени.
Входные данные
Программа на вход получает три целых числа — часы, минуты, секунды, задающие первый момент времени и три целых числа, задающих второй момент времени.
Выходные данные
Выведите число секунд между этими моментами времени.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
1
1
1
2
2
2
|
3661
|
2 |
1
2
30
1
3
20
|
50
|
| |
|
Темы:
Циклы
Вывод формулы
Машина для изготовления печенья производит B печенья в следующие моменты времени: A секунд, 2A секунд, 3A секунд и каждое последующее число, кратное A секундам после включения. Определите сколько печенья будет изготовлено машиной к моменту времени T+0,5 секунд после включения.
Входные данные
Программа получает на вход одну строку, содержащую три числа A , B и T . 1 <= A, B, T <= 20, A <= T. Все числа целые положительные.
Выходные данные
Выведите одно число - ответ на задачу.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
3 5 7 |
10 |
2 |
3 2 9 |
6 |
| |
|