Условие задачи | | Прогресс |
Темы:
Множества
Жадный алгоритм
Фермер Джон открыл пастбище с целью помочь Беси и её друзьям.
Пастбище ФД можно рассматривать как большую 2D-решётку квадратных ячеек. Каждая ячейка помечена таким образом:
- C если в ячейке корова
- G если в ячейке трава
- . если в ячейке нет ни коровы, ни травы
Для того, чтобы две различные коровы стали друзьями, коровы должны встретиться в ячейке с травой, которая горизонтально или вертикально соседствует с каждой из них. Во время этого процесса они съедают траву в этой ячейке, поэтому другая пара коров уже не сможет использовать эту ячейку как место встречи. Любая корова может подружиться более чем с одной другой коровой, но никакая пара коров не может встретиться и стать друзьями более одного раза.
ФД надеется, что много пар коров станут друзьями. Определите максимальное количество пар коров, которые могут стать друзьями.
ФОРМАТ ВВОДА:
Первая строка содержит N и M.
Каждая из следующих N строк содержит M символов, описывая пастбище.
ФОРМАТ ВЫВОДА:
Определите максимальное количество пар коров, которые могут стать друзьями.
№ |
Входные данные |
Выходные данные |
1 |
4 5
.CGGC
.CGCG
CGCG.
.CC.C
|
4 |
Если мы пометим корову в строке i и столбце j координатами (i,j), тогда в этом примере есть коровы в (1,2), (1,5), (2,2), (2,4), (3,1), (3,3), (4,2), (4,3), and (4,5). Один из способов, чтобы 4 коровы стали друзьями таков:
Коровы из (2,2) и (3,3) едят траву в (3,2).
Коровы из (2,2) и (2,4) едят траву в (2,3).
Коровы из (2,4) и (3,3) едят траву в (3,4).
Коровы из (2,4) и (1,5) едят траву в (2,5).
| |
|
Темы:
Жадный алгоритм
Известно, знаки зодиака в Китайском календаре следуют 12-летнему циклу: Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig, Rat, и затем опять Ox. Менее известен тот факт, что в конце каждого года Ox открывается временной портал, позволяющий коровам переместиться в любой другой год Ox в прошлом или будущем.
Корова Беси хочет посетить N своих предшественников, которые жили много раньше (\(1<=N<=0x10000\)). 0x10000 - это число в 16-ричной системе счисления, что равно 65536 в десятичной.
К несчастью, путешествия во времени утомительны, и Беси предпочитает сделать не более K прыжков во времени (\(1<=K<=N\)). Помогите Беси определить минимальное количество лет, которое потребуется Беси, чтобы посетить всех предшественников и вернуться в текущий год, совершив не более K прыжков во времени по пути.
Беси не обязана использовать временной потрал в данном году Ox, если не хочет. Временные порталы соединяют первые дни каждого из Ox годов друг с другом, поэтому, например, если Беси использовала временной портал и затем подождала 12 лет следующего временного портала, она потратит ровно 12 лет на процесс. Беси начинает свое путешествие в первый день текущего Ox-года, поэтому она может путешествовать назад. Никто из предшественников Беси не жил в годах Ox.
Входные данные
Первая строка ввода содержит N и K . Следующие N строк содержат N различных целых чисел в интервале \(1…10^9\), указывающих сколько лет назад жил каждый из предшественников Беси.
Выходные данные
Выведите минимальное количество лет, которое потребуется Беси, чтобы посетить всех своих предшественников и вернуться в настоящий год.
Примеры
№ |
Входные данные |
Выходные данные |
Примечание |
1 |
5 3
101
85
100
46
95 |
36 |
Один из способов для Беси посетить всех своих предшественников за 36 лет таков:
- Войти в портал в текущем году и вернуться на 48 лет в прошлое.
- Подождать 12 лет затем войтив портал в 36 лет в прошлом и пропутешествовать 108 лет в прошлое.
- Подождать 24 года, затем зайти в портал в 84 года в прошлом и пропутешествовать обратно в текущий год.
|
| |
|
Темы:
Цикл while
Жадный алгоритм
Дорожка замощена плитками в один ряд, плитки пронумерованы числами от 1 до 1000. На плитках с номерами A, B и C (A < B < C) сидят три кузнечика, которые играют в чехарду по следующим правилам:
1. На одной плитке может находиться только один кузнечик.
2. За один ход один из двух крайних кузнечиков (то есть с плитки A или с плитки C) может перепрыгнуть через среднего кузнечика (плитка B) и встать на плитку, которая находится ровно посередине между двумя оставшимися кузнечиками (то есть между B и C или A и B соответственно). Если между двумя оставшимися кузнечиками находится чётное число плиток, то он может выбрать любую из двух центральных плиток.
Например, если кузнечики первоначально сидели на плитках номер 1, 5, 10, то первым ходом кузнечик с плитки номер 10 может перепрыгнуть на плитку номер 3 (она находится посередине между 1 и 5), или кузнечик с плитки номер 1 может перепрыгнуть на плитку номер 7 или 8 (эти две плитки находятся посередине между плитками 5 и 10).
Даны три числа: A, B, C. Определите, какое наибольшее число ходов может продолжаться игра.
Формат входных данных
Программа получает на вход три целых числа A, B и C (1 <= A < B < C <= 1000), записанных в отдельных строках.
Формат выходных данных
Выведите одно число — наибольшее количество ходов, которое может продолжаться игра.
Ввод |
Вывод |
Примечание |
1
4
6 |
2 |
В примере сначала кузнечик с плитки №6 прыгает на плитку №3. Затем кузнечик с плитки №4 прыгает на плитку №2. |
| |
|
Темы:
Жадный алгоритм
В игре Cookie Clicker игрок зарабатывает печеньки (cookies), щёлкая мышкой по изображению большой печеньки. Тратя заработанные печеньки, игрок может покупать различные усовершенствования (ферму, фабрику и т. д.), которые также производят дополнительные печеньки.
Рассмотрим упрощённый вариант этой игры. Пусть игрок может сделать один щелчок мышкой в секунду, что приносит ему одну печеньку. Также в любой момент времени игрок может потратить C печенек на покупку фабрики (при этом у игрока должно быть не меньше C печенек, после покупки фабрики количество его печенек моментально уменьшается на C ). Каждая купленная фабрика увеличивает ежесекундное производство печенек на P штук (то есть если у игрока одна фабрика, то он получает 1 + P печенек в секунду, две фабрики — 1 + 2 P печенек, три фабрики — 1 + 3 P печенек и т. д.). Игрок может приобрести неограниченное число фабрик стоимостью C печенек каждая. Фабрика начинает производить дополнительные печеньки сразу же, например, если после какой-то секунды игры у игрока стало C печенек, то игрок может купить фабрику и уже на следующей секунде его производство печенек увеличится на P штук.
Оригинальная игра никогда не заканчивается, но мы будем считать, что целью игры является набрать N печенек. Определите минимальное время, за которое может быть достигнута цель игры.
Входные данные
Программа получает на вход три целых положительных числа, записанных в отдельных строках: С (стоимость фабрики), P (производительность одной фабрики) и N (необходимое количество печенек).
Выходные данные
Программа должна вывести одно целое число — минимальное время в секундах, за которое игрок может получить не менее N печенек.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
50
3
100 |
75 |
Через 50 секунд после начала игры у игрока будет 50 печенек, и он сможет купить фабрику. После этого он будет получать 4 печеньки в секунду, и на производство 100 печенек понадобится еще 25 секунд. |
2 |
99
10
100 |
100 |
Игрок сможет набрать 100 печенек за 100 секунд, при этом фабрику покупать нет смысла. |
| |
|
Темы:
Жадный алгоритм
Вещественные числа
Дано верное равенство вида a1+a2+…+aN=b1+b2+…bM, где a1,a2,…,aN, b1,b2,…,bM – некоторые действительные (не обязательно целые) числа. Требуется «округлить» это равенство, т.е. получить новое верное равенство c1+c2+…+cN=d1+d2+…+dM, где c1,c2,…,cN,d1,d2,…,dM — целые числа, и при этом c1 получено округлением числа a1 до целого вверх или вниз (так, например, число 1.7 разрешается округлить как до 1, так и до 2), c2 получено округлением a2, …, cN – округлением aN, d1 – округлением b1, …, dM – округлением bM. Если какое-то из чисел в исходном равенстве было целым, оно должно остаться без изменений.
Входные данные
Во входном файле задано сначала число N, затем N чисел a1, a2, …, aN, затем число M, затем числа b1, b2, …, bM. Каждое число задается на отдельной строке. M и N – натуральные числа, не превышающие 1000. Остальные числа — вещественные, каждое из них по модулю не превышает 1000 и содержит не более 6 цифр после десятичной точки. При этом a1+a2+…+aN=b1+b2+…bM.
Выходные данные
Если «округлить» равенство можно, то в выходной файл выведите сначала числа c1,c2,…,cN, а затем числа d1,d2,…,dM. Все числа должны быть целыми и выведены без десятичной точки. Числа должны разделяться пробелами или переводами строки. Если решений несколько, выведите любое из них.
Если округлить исходное равенство до верного целочисленного равенства невозможно, выведите одно число 0.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
3
0.15
-3.000
2.7
1
-0.15 |
1
-3
2
0 |
Обратите внимание, что число –3 может округляться только в –3, в то время как 0.15 можно округлить как до 0, так и до 1, 2.7 – до 2 или до 3, –0.15 – до –1 или до 0. Приведенное решение не является единственным: так же верным является, например, такое округление: 1+(–3)+2=0
|
2 |
2
1.7
2.5
3
1
2.000
1.20 |
2
2
1
2
1 |
Приведенное решение 1+3=1+2+1 не является единственным. Верными ответами также являются 2+2=1+2+1 и 2+3=1+2+2.
|
3 |
1
0.5
1
0.5 |
0
0 |
Здесь верными являются как ответ 1=1, так и 0=0. |
| |
|
Темы:
Алгоритмы сортировки
Дерево отрезков, RSQ, RMQ
Жадный алгоритм
Джек нашел N камней и упорядочил их в порядке возрастания их массы. Массы всех камней различны. Самый легкий камень получил номер 1, следующий ≤ 2 и так далее, самый тяжелый получил номер N.
У Джека есть чашечные весы и он решил положить все камни на них в каком-то порядке. Известен порядок, в котором он будет класть камни, и какой камень на какую чашу попадет.
Ваша задача — определить состояние весов после добавления каждого камня. Точные массы камней не известны — даются только их номера.
Входные данные
Первая строка содержит целое число N (1 N ≤ 100000).
Каждая из следующих N строк содержит по два целых числа: R (1 ≤ R ≤ N) и S (1 ≤ S ≤ 2). R - номер камня, который будет положен на чашу S. Все R будут различны.
Выходные данные
Выведите N строк - по одной для каждого камня. Если после добавления соответствующего камня чаша 1 тяжелее, выведите “<”. Если сторона 2 тяжелее, выведите “>”. Если невозможно определить, в каком состоянии будут весы, выведите “?”.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
5
1 2
3 1
2 1
4 2
5 1 |
<
>
>
?
>
|
| |
|
Темы:
Условный оператор
Жадный алгоритм
Магазины в рекламных целях часто устраивают распродажи. Так, например,одна из крупных сетей магазинов канцелярских товаров объявила два рекламных предложения: "купи N одинаковых товаров и получи еще один товар бесплатно"и "купи K товаров по цене K−1 товара".
Для проведения олимпиады организаторам требуется распечатать условия для участников, на что уходит очень много бумаги. Каждая пачка стоит B рублей. Какое максимальное количество пачек бумаги можно приобрести на A рублей, правильно используя рекламные предложения?
Входные данные
Во входном файле записаны целые числа N, K, A и B (1 ≤ N ≤ 100, 2 ≤ K ≤ 100, 1 ≤ A ≤ 109, 1 ≤ B ≤ 109), разделенные пробелами.
Выходные данные
Выведите одно целое число - максимальное количество пачек бумаги, которое смогут купить организаторы олимпиады.
Примечание
В первом примере, дважды используя второе рекламное предложение, можно купить 8 пачек бумаги, заплатив за 6.
Во втором примере рекламными предложениями воспользоваться нельзя.
В третьем примере можно по одному разу воспользоваться каждым из двух рекламных предложений и на оставшийся рубль купить еще одну пачку бумаги.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
4 4 13 2 |
8 |
2 |
3 4 8 3 |
2 |
3 |
3 4 7 1 |
9 |
| |
|
Темы:
Сортировка подсчетом
Жадный алгоритм
Сканирующая прямая
Новый Президент Тридевятой республики начал свою деятельность с полной ревизии системы общественного транспорта страны. В результате на основе социологических опросов населения было составлено идеальное ежедневное расписание движения междугородних автобусов, утвержденное Парламентом республики.
Более того, было решено заменить весь автобусный парк одинаковыми новыми, очень дорогими, но гораздо более надежными, красивыми и удобными машинами.
Автобусная сеть страны охватывает N городов, занумерованных целыми числами от 1 до N.
Идеальное расписание содержит M ежедневных рейсов, i-й рейс начинается в городе Fi в момент времени Xi и заканчивается в некотором другом городе Gi в момент времени Yi. Продолжительность каждого рейса ненулевая и строго меньше 24 часов. Рейс i выполняется одним из автобусов, находящихся в момент времени Xi в городе Fi.
Новые автобусы не требуют ремонта и могут работать круглосуточно, поэтому автобус, прибывший в некоторый момент времени в некоторый город, всегда готов в тот же самый момент времени или позже отправиться в путь для обслуживания любого другого рейса из данного города. Автобус может выехать из города, только выполняя какой-либо рейс из расписания.
Предполагается, что расписание будет действовать неограниченное время, поэтому может оказаться так, что его невозможно обслужить никаким конечным числом автобусов.
Определите наименьшее количество новых автобусов, достаточное для обеспечения движения по расписанию в течение неограниченного периода времени.
Входные данные
В первой строке задаются целые числа N и М (1 ≤ N, M ≤ 100 000) — количество городов и рейсов автобусов соответственно.
В каждой из следующих M строк содержится описание рейса автобуса: номер города отправления Fi, время отправления Xi, номер города назначения Gi (Fi ≠ Gi), время прибытия Yi, отделенные друг от друга одним пробелом. Время прибытия и отправления задается в формате HH:MM, где HH — часы от 00 до 23, MM — минуты от 00 до 59.
Выходные данные
Выведите одно число — минимально необходимое количество автобусов. Если расписание невозможно обслуживать в течение неограниченного периода времени конечным числом автобусов, выведите число -1.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
4 6
1 10:00 2 12:00
1 10:00 3 09:00
3 12:00 4 23:00
2 11:00 4 13:00
4 12:00 1 11:00
4 12:00 1 10:30 |
8 |
| |
|
Темы:
Бинарный поиск в массиве
Бинарный поиск по ответу
Жадный алгоритм
В целях улучшения ландшафтной архитектуры и экологической обстановки управление городского хозяйства разработало проект программы озеленения центрального проспекта. Согласно проекту, с одной стороны проспекта планируется высадить в ряд деревья K различных видов, для чего были закуплены саженцы деревьев, причем i-го вида было закуплено ai саженцев.
Для достижения эстетического совершенства высаживаемого ряда деревьев требуется, чтобы среди любых P подряд идущих деревьев все деревья были разных видов. Если количество деревьев в ряду меньше P, то все они должны быть различны.
Требуется написать программу, которая находит максимальное количество деревьев в эстетически совершенном ряду, посаженном из закупленных саженцев.
Входные данные
В первой строке вводятся два целых числа: K — количество различных видов деревьев (1 ≤ K ≤ 100 000), и P — требуемое количество подряд идущих деревьев разных видов (2 ≤ P ≤ K). Последующие K строк входных данных содержат целые числа ai, задающие количество закупленных саженцев деревьев i-го вида (1 ≤ ai ≤ 109), по одному числу в каждой строке.
Выходные данные
Выведите единственное число — максимальное количество деревьев, посадка которых в ряд в некотором порядке достигает эстетического совершенства.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
3 3
1
200
1 |
4 |
| |
|
Темы:
Эвристические методы
Бинарный поиск по ответу
Быстрая сортировка
Жадный алгоритм
Скоро новый год и Санта-Клаус уже начал готовить свою волшебную оленью упряжку, на которой он развозит подарки детям. Известно, что упряжку везут несколько волшебных оленей, на каждом из которых едут два эльфа.
Но волшебные олени – строптивые животные, поэтому не любые два эльфа могут ехать на любом олене. А именно, каждый олень характеризуется некоторой строптивостью ai, а каждый эльф – темпераментом bi. Два эльфа j и k могут ехать на i-м олене в том и только в том случае, если либо bj < ai < bk, либо bk < ai < bj.
Чтобы его появление было максимально зрелищным, Санта-Клаус хочет, чтобы в его упряжке было как можно больше оленей. Про каждого оленя Санта знает его строптивость, а про каждого эльфа – его темперамент.
Помогите Санте выяснить, какое максимальное количество оленей он сможет включить в упряжку, каких оленей ему следует выбрать, и какие эльфы должны на них ехать.
Входные данные
В первой строке вводятся два целых числа m и n – количество оленей и эльфов, соответственно ( 1 ≤ m, n ≤ 100 000).
Вторая строка содержит m целых чисел ai – строптивость оленей ( 0 ≤ ai ≤ 109). В третьей строке записаны n целых чисел bi – темперамент эльфов ( 0 ≤ bi ≤ 109).
Выходные данные
В первой строке выведите одно число k – максимальное количество оленей, которое Санта-Клаус может включить в свою упряжку. В следующих k строках выведите по три целых числа: di, ei, 1, ei, 2 – для каждого оленя в упряжке выведите его номер и номера эльфов, которые на нем поедут. Если решений несколько, выведите любое.
И эльфы, и олени пронумерованы, начиная с единицы, в том порядке, в котором они заданы во входных данных.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
4 6
2 3 4 5
1 3 2 2 5 2 |
2
1 1 2
3 4 5 |
| |
|
Темы:
"Два указателя"
Жадный алгоритм
Фермер Джон обнаружил, что корову легче доить, если рядом есть другая корова для моральной поддержки. Поэтому он хочет разбить M своих коров (M <= 109, M - чётное) на M/2 пар. Каждую из этих пар он помещает в отдельное стойло, и все пары коров доятся одновременно.
Каждая из коров даёт различное количество молока. Если коровы в паре дают по A и B литров молока, то для дойки этой пары требуется A+B единиц времени.
Помогите ФД определить минимально возможное количество времени на весь процесс дойки, в предположении, что коровы разбиты на пары наилучшим образом.
Входные данные
Первая строка ввода содержит N (1 <= N <= 100000). Каждая из следующих N строк содержит два целых числа x и y , указывающих, что у ФД есть x коров с производством молока по y (1 <= y <= 109) литров. Сумма всех x-ов есть M - общее количество коров.
Выходные данные
Выведите минимальное количество времени, которое займёт дойка всех коров, в предположении, что они разбиты на пары оптимальным образом.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
3
1 8
2 5
1 2
|
10 |
| |
|
Темы:
Хеш
Жадный алгоритм
Префиксные суммы(минимумы, ...)
Во время покраски забора Том Сойер написал на нем слово s. Однако затем он решил, что слова-палиндромы смотрятся красивее.
Теперь он хочет дописать к имеющемуся слову s справа другое слово g так, чтобы получившееся слово sg было палиндромом. Однако в целях экономии краски длина g должна быть как можно меньше.
Помогите Тому Сойеру определить слово g.
Входные данные:
В первой строке дано слово s (1 <= |s| <= 200000), состоящее из строчных латинских букв.
Выходные данные:
Выведите минимально возможное по длине слово g, которое нужно дописать, чтобы слово sg на заборе стало палиндромом. Если дописывать ничего не надо, то выведите '-'.
Примеры:
Входные данные |
Выходные данные |
abc |
ba |
a |
- |
| |
|
Темы:
Бинарный поиск в массиве
Динамическое программирование
Жадный алгоритм
На межрегиональной олимпиаде по программированию роботов соревнования проводятся в один тур и в необычном формате. Задачи участникам раздаются последовательно, а не все в самом начале тура, и каждая i-я задача (1 ≤ i ≤ n) становится доступной участникам в свой момент времени si. При поступлении очередной задачи каждый участник должен сразу определить, будет он ее решать или нет. В случае, если он выбирает для решения эту задачу, то у него есть ti минут на то, чтобы сдать ее решение на проверку, причем в течение этого времени он не может переключиться на решение другой задачи. Если же участник отказывается от решения этой задачи, то в будущем он не может к ней вернуться. В тот момент, когда закончилось время, отведенное на задачу, которую решает участник, он может начать решать другую задачу, ставшую доступной в этот же момент, если такая задача есть, или ждать появления другой задачи. При этом за правильное решение i-й задачи участник получает ci баллов.
Артур, представляющий на межрегиональной олимпиаде один из региональных центров искусственного интеллекта, понимает, что важную роль на такой олимпиаде играет не только умение решать задачи, но и правильный стратегический расчет того, какие задачи надо решать, а какие пропустить. Ему, как и всем участникам, до начала тура известно, в какой момент времени каждая задача станет доступной, сколько времени будет отведено на ее решение и сколько баллов можно получить за ее решение. Артур является талантливым школьником и поэтому сможет успешно решить за отведенное время и сдать на проверку любую задачу, которую он выберет для решения на олимпиаде.
Требуется написать программу, которая определяет, какое максимальное количество баллов Артур сможет получить при оптимальном выборе задач, которые он будет решать, а также количество и перечень таких задач.
Входные данные
Первая строка содержит одно целое число n (1 ≤ n ≤ 105) количество задач на олимпиаде.
Последующие n строк содержат описания задач, по три числа на каждой строке: si момент появления i-й задачи в минутах, ti время, отведенное на ее решение в минутах, и ci сколько баллов получит участник за решение этой задачи (1 ≤ si, ti, ci ≤ 109).
Выходные данные
Первая строка должна содержать одно число – максимальное количество баллов, которое сможет получить Артур на олимпиаде.
Вторая строка должна содержать одно целое число m - количество задач, которые надо решить при оптимальном выборе.
Третья строка должна содержать m разделенных пробелом целых чисел - номера этих задач в порядке их решения. Задачи пронумерованы, начиная с единицы, в порядке их описания во входном файле.
Если оптимальных ответов несколько, необходимо вывести любой из них.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
2
1 1 1
2 2 2 |
3
2
1 2 |
2 |
3
1 2 1
3 2 1
2 4 3 |
3
1
3 |
| |
|
Темы:
"Два указателя"
Жадный алгоритм
Конструктив
У Томми есть детская игрушка «cортировщик», с расположенными подряд n колышками. На каждом колышке сейчас не более одного диска (то есть на каком-то колышке диск есть, а на каком-то его нет). Томми хочет переложить имеющиеся диски на колышках таким образом, чтобы они образовывали неубывающую последовательность при просмотре слева направо. То есть на каждом следующем колышке количество дисков должно быть не меньше, чем на предыдущем. Какое минимальное количество дисков Томми необходимо переложить?
Обратите внимание, что какие- то колышки по окончанию сортировки могут быть пустыми. Какие-то колышки могут содержать более 1 диска.
Входные данные
Программа получает на вход в первой строке целое число n (1 <= n <= 105), количество колышек на «cортировщике». Следующая строка содержит n целых чисел a1 , a2 , ... an – наличие диска на соответствующем колышке (0 <= ai <= 1). число 0 означает, что на i -м колышке нет диска, 1 – диск есть.
Выходные данные
Выведите ответ на задачу.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
8
0 0 1 1 1 1 1 1
|
0
|
2 |
11
1 1 0 0 1 0 0 1 1 1 0
|
3
|
| |
|
Темы:
Использование сортировки
Жадный алгоритм
Маленький Миша любит играть счетными палочками. Счетные палочки он берет у своей сестры первоклассницы. Так как он редко возвращает их назад, маме приходится часто покупать новые палочки. Поэтому не все палочки у Миши одинаковые, но все палочки имеют целочисленную длину.
Сегодня Миша строит из палочек следующую фигуру. Он начал из угла комнаты. Мы с вами обозначим, условно, этот угол координатой (0, 0). Дальше Миша выкладывает палочку параллельно одной из двух стен, исходящей из данного угла. Будем считать, что стены ровные и образуют друг с другом в точке (0, 0) угол 90 градусов. При этом, Миша никогда не выкладывает две подряд палочки одновременно параллельно одной и той же стене (другими словами, он всегда чередует направление палочек).
Миша, хоть и маленький и не знает геометрии, но все же всегда радуется, если конец его фигуры находится как можно дальше от стартового угла. Помогите Мише выложить фигуру, которая его обрадует. Любые две палочки, которые выкладывает Миша всегда имеют минимум одну точку касания или пересечения.
Входные данные
Программа получает на вход несколько строк. Первая строка содержит целое число n (1<= n <= 100000) — количество палочек, которые есть у Миши. Вторая строка содержит n целых чисел a1 ,... ,an (1 <= ai <= 10000) - длины Мишиных палочек.
Выходные данные
Выведите одно целое число — квадрат максимального расстояния от угла с координатой (0,0) до конечной точки фигуры, которую построил Миша.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
3
1 2 3 |
26 |
2 |
4
1 1 2 2 |
20 |
| |
|
Темы:
Использование сортировки
Жадный алгоритм
Задача на реализацию
Простые задачи на перебор
"Два указателя"
У маленького Миши есть кубики, на каждом из которых написана одна английская строчная буква. Вчера он выкладывал кубики в два ряда. В первом ряду у Миши n кубиков с буквами, во втором - m кубиков с буквами. Так получилось, что в двух этих рядах нет совпадающих букв. Другими словами, ни одна буква не содержится одновременно в обоих рядах.
Сегодня маленький Миша решил продолжить играть с кубиками. Но теперь он берет один любой кубик из какого-либо ряда и составляет из них третий ряд, добавляя кубик всегда в конец. Маленький Миша никогда не берет более k кубиков подряд из одного и того же ряда. Миша закончил играть тогда, когда у него закончились кубики в каком-то одном ряду (в первом или во втором).
Наблюдавший за игрой папа заметил, что играя таким образом у Миши получилась лексикографически наименьшая строка. По известным двум строкам, которые образуются путем прочтения букв первого и второго ряда и числу k определите строку, которую получил маленький Миша.
Строка x лексикографически меньше строки y только и только тогда, когда выполняется одно из следующих условий:
- x является префиксом y , но x != y ;
- в первой позиции, где x и y различаются, в строке x находится буква, которая стоит в алфавите раньше, чем соответствующая буква y .
Входные данные
Программа получает на вход несколько строк. В первой строке записаны три числа: n - количество кубиков в первом ряду, m - количество кубиков во втором ряду, k - целое число(1 <= n, m, k <= 100). Во второй строке записана строка a длиной n - строка, образованная прочтением букв, написанных на кубиках первого ряда. В третьей строке - строка b длиной m - строка, образованная прочтением букв, написанных на кубиках второго ряда.
Выходные данные
Выведите ответ на задачу.
Примеры
№ |
Входные данные |
Выходные данные |
1 |
6 4 2
aaaaaa
bbbb |
aabaabaa |
| |
|