Плюсануть
Поделиться
Класснуть
Запинить

Задачи из рубрикатора

Тег: Конструктив

Условие задачи  
ID 38297
Сломанный робот
Темы: Элементарная геометрия    Конструктив   

В 2037-м году для создания научно исследовательской базы на Марс высадился отряд роботов, один из которых отправился собирать информацию о районе дислокации. В данный момент роботу из-за отказа некоторых узлов срочно необходимо вернуться в место закладки будущей базы.
Поверхность Марса в районе высадки десанта можно условно представить в виде плоскости с введенной на ней системой координат, такой, что база находится в точке (0, 0). Робот же остановился в точке (x0, y0). Он может перемещаться в четырёх направлениях:
• «R» — вправо, при этом координата x робота увеличивается на 1;
• «L» — влево, при этом координата x робота уменьшается на 1;
• «U» — вверх, при этом координата y робота увеличивается на 1;
• «D» — вниз, при этом координата y робота уменьшается на 1.
Из-за неисправности робот не может совершить два перемещения подряд в одном направлении.
Помогите роботу вернуться на базу. Робот должен сделать не более 10000 передвижений, иначе он разрядится и не доедет до базы!

Входные данные
В единственной строке входных данных находятся два целых числа x0 и y0 — изначальные координаты робота (−1000 ≤ x0, y0 ≤ 1000).

Выходные данные
В первой строке выведите целое число, не большее 10000 — количество операций, которые должен сделать робот. Во второй строке выведите сами операции. Каждая операция задаётся одной буквой:
вправо — «R» влево — «L», вверх — «U», вниз — «D». Символы необходимо выводить без пробелов между ними.
 

Примеры
Входные данные Выходные данные
1 2 1 5
DLULD


Замечание
Вы не обязаны выводить кратчайший маршрут. Например, в приведенном примере кратчайший
маршрут состоит из 3 передвижений: влево, вниз, влево.
Иллюстрация к тесту из примера:

ID 38338
Строки
Темы: Строки    Конструктив   

Даны три строки, состоящие из строчных латинских букв. С этими строками можно производить следующие операции: либо заменить один символ строки на два таких же символа (например, заменить символ «a» на «aa»), либо, наоборот, заменить два подряд идущих одинаковых символа на один такой же символ.

Необходимо при помощи этих операций сделать все три строки равными какой-то другой общей строке S либо определить, что это сделать невозможно. При этом нужно минимизировать общее количество операций.

Входные данные
Программа получает на вход три строки, состоящие из строчных букв латинского алфавита. Длина каждой строки не превышает 100 символов.

Выходные данные
Если при помощи указанных операций возможно сделать все три строки равными, выведите такую строку S , что суммарное число операций, необходимых для преобразования всех трёх данных строк к строке S , будет минимальным. Если этого сделать нельзя, программа должна вывести одно слово IMPOSSIBLE (заглавными буквами).

Примеры
Входные данные Выходные данные
1 aaaza
aazzaa
azzza
aazza
2 xy
xxyy
yx
IMPOSSIBLE

ID 38506
Ох уж эти палиндромы
Темы: Конструктив   

Назовём палиндромом непустую строку, которая читается одинаково справа налево и слева направо. Например, « abcba », « a » и « abba » являются палиндромами, а « abab » и « xy » не являются.

Назовём подстрокой строки строку, полученную отбрасыванием некоторого (возможно, нулевого) количества символов с начала и с конца строки. Например, « abc », « ab » и « c » являются подстроками строки « abc », а « ac » и « d » не являются.

Назовем палиндромностью строки количество её подстрок, которые являются палиндромами. Например, палиндромность строки « aaa » равна 6, так как все её подстроки являются палиндромами, а палиндромность строки « abc » равна 3, так как только подстроки длины 1 являются палиндромами.

Вам дана строка s. Вы можете произвольным образом переставлять символы в ней. Требуется получить строку, имеющую максимальную палиндромность.

Входные данные
В первой строке задано целое число n (1 ≤ n ≤ 100000) — длина строки s.

Во второй строке задана строка s, состоящая из n строчных букв латинского алфавита.

Выходные данные
Выведите строку t, которая состоит из тех же символов (с учётом кратностей), что и s, и имеет максимальную палиндромность среди всех строк, которые могут быть получены из s перестановкой символов.

Если подходящих строк несколько, выведите любую.

Примечание
В первом примере у строки « ololo » есть 9 подстрок-палиндромов: « o », « l », « o », « l », « o », « olo », « lol », « olo », « ololo ». Обратите внимание, что некоторые подстроки совпадают, но учитываются несколько раз.

Во втором примере палиндромность строки « abccbaghghghgdfd » равна 29.
 

Примеры
Входные данные Выходные данные
1 5
oolol
ololo
2 16
gagadbcgghhchbdf
abccbaghghghgdfd

ID 38524
Гуляй и телепортируйся
Темы: Конструктив   

На линии, идущей с востока на запад, есть N городов. Города пронумерованы от 1 до N в порядке с запада на восток. Каждая точка на линии имеет одномерные координаты, а точка, которая находится дальше на восток, имеет большее значение координаты. Координата города i - Xi. Вы находитесь в городе 1 и хотите посетить все остальные города. У вас есть два способа путешествовать:
- Ходить по линии. Ваш уровень усталости увеличивается на A каждый раз, когда вы путешествуете на расстояние 1, независимо от направления.
- Телепортируйтесь в любое место по вашему выбору. Ваш уровень усталости увеличивается на B независимо от пройденного расстояния.
Найдите минимально возможное общее повышение уровня вашей усталости, когда вы посетите все города этими двумя способами.

Входные данные
В первой строке заданы три целых числа N (\(2<=N<=10^5\)), A (\(1<=A<=10^9\)), B (\(1<=B<=10^9\)). Во второй строке заданы координаты городов Xi (\(1<=X_i<=10^9\)), для всех i \(X_i <X_{i+1}\)(\(1<=i<=N-1\)).

Выходные данные
Выведите на экран ответ на задачу.
 

 

Примеры
Входные данные Выходные данные Пояснение
1 4 2 5
1 2 5 7
11 Из города 1 пройдите расстояние 1 до города 2, затем телепортируйтесь в город 3, затем пройдите расстояние 2 до города 4.
Общее увеличение вашего уровня усталости в этом случае составляет 2 × 1 + 5 + 2 × 2 = 11, что является минимально возможным значением.
2 7 1 100
40 43 45 105 108 115 124
84 Из города 1 пройдите пешком до города 7.
Общее увеличение вашего уровня усталости в этом случае составляет 84, что является минимально возможным значением.
3 7 1 2
24 35 40 68 72 99 103
12 Посетите все города в любом порядке, телепортировавшись шесть раз.
Суммарное повышение уровня утомляемости в этом случае составляет 12, что является минимально возможным значением.

 

ID 38534
Еще одна игра в кости
Темы: Конструктив   

Ушан решил сыграть шестигранным кубиком. На каждой из шести сторон изображено целое число от 1 до 6, а два числа на противоположных сторонах всегда в сумме дают 7. Ушан сначала кладет кубик на стол произвольной стороной вверх, а затем повторно выполняет следующую операцию. Поверните кубик на 90 ° в одном из следующих направлений: влево, вправо, вперед (кубик приблизится) и назад (кубик уйдет дальше), затем получите y очков, где y - это число, написанное на стороне, обращенной вверх.

Например, давайте рассмотрим ситуацию, когда сторона, показывающая 1, обращена вверх, ближняя сторона показывает 5, а правая сторона показывает 4, как показано на рисунке (исходное положение для нашего примера).


Если кубик повернуть вправо, как показано на рисунке, сторона, показывающая 3, будет обращена вверх. Если из исходного положения кубик повернуть влево, сторона, показывающая 4, будет смотреть вверх. Вверху будет сторона, показывающая 2, если кубик из исходного положения повернуть вперед, а сторона, показывающая 5, будет обращена вверх, если кубик повернуть назад из исходного положения.

Найдите минимальное количество операций, которое Ушан должен выполнить, чтобы набрать в сумме не менее x баллов.

Входные данные
На вход подается целое число x (\(1<=x<=10^{15}\)).

Выходные данные
Выведите на экран ответ.
 

 

Примеры
Входные данные Выходные данные
1 7 2
2 149696127901 27217477801

 

ID 38535
Пожиратель карт
Темы: Конструктив   

Ушан решил сыграть в карточную игру. У него есть колода, состоящая из N карт. На i-й карточке сверху написано целое число Ai. Ушан выполняет описанную ниже операцию ноль или более раз, так что значения, записанные на оставшихся карточках, будут попарно различны.
Найдите максимально возможное количество оставшихся карт. Здесь N нечетное, что гарантирует сохранение хотя бы одной карты. 
Операция: вынуть из колоды три произвольные карты. Из этих трех карт съешьте две: одна с наибольшим значением, а другая с наименьшим значением. Затем верните оставшуюся одну карту в колоду.

Входные данные
В первой строке записано нечетное число N (\(3<=N<=10^5\)). Во второй строке записаны N чисел A(\(1<=A_i<=10^5\))

Выходные данные
Выведите максимально возможное количество оставшихся карт.
 

 

Примеры
Входные данные Выходные данные Пояснения
1 5
1 2 1 3 7
3 Оптимальное решение - выполнить операцию один раз, вынув две карты с 1 и одну карту с 2. Одна карта с 1 и другая с 2 будут съедены, а оставшаяся карта с 1 будет возвращена в колоду.
Тогда значения, написанные на оставшихся картах в колоде, будут попарно различными: 1, 3 и 7.
2 15
1 3 5 2 1 3 2 8 8 6 2 6 11 1 1
7