Плюсануть
Поделиться
Класснуть
Запинить


Олимпиадный тренинг

Вы можете самостоятельно решать эти задачи столько раз, сколько вам это понадобится.
   

Лапта

Бинарный поиск по ответу Элементарная геометрия Квадродерево

При игре в лапту одна команда ловит мяч и пытается осалить им бегущего. Игрок другой команды должен, перед тем как бежать, ударить мяч в поле. Известно, на какое максимальное расстояние он может ударить, а также скорости и начальные координаты игроков другой команды. Требуется выбрать направление и силу удара так, чтобы минимальное время, которое потребуется другой команде, чтобы поднять мяч с земли, было наибольшим. (Пока мяч летит, игроки стоят на местах.)

Входные данные

В первой строке входных данных содержатся два числа: D — максимальное расстояние удара и N — количество соперников на поле (D и N натуральные числа, ≤ 1000, ≤ 200). В следующих N строках задается по три числа – начальные координаты xi и yi и максимальная скорость vi соответствующего игрока (скорости и координаты — целые числа, –1000 ≤ xi ≤ 1000, 0 ≤ yi ≤ 1000, 0 < vi ≤ 1000), никакие два игрока не находятся изначально в одной точке. Игрок, бьющий мяч, находится в точке с координатами (0,0). Мяч выбивается в точку с неотрицательной ординатой (  0).

Выходные данные

Выведите сначала время, которое потребуется игрокам, чтобы добежать до мяча, а затем координаты точки, в которую нужно выбить мяч. Если таких точек несколько, выведите координаты любой из них. Время и координаты нужно вывести с точностью 10–3.

Оценка задачи

1 балл получат программы, которые верно работают, когда в поле не более двух соперников.

 

Ввод Вывод
10 2
1 1 1
-1 1 1
9.05539
0.00000 10.00000

Коровы - в стойла

Бинарный поиск по ответу

На прямой расположены стойла, в которые необходимо расставить коров так, чтобы минимальное расcтояние между коровами было как можно больше.
 
Входные данные
В первой строке вводятся числа N  (2 < N < 10001) – количество стойл и K  (1 < K < N ) – количество коров. Во второй строке задаются N натуральных чисел в порядке возрастания – координаты стойл (координаты не превосходят 109)
 
Выходные данные
Выведите одно число – наибольшее возможное допустимое расстояние.

Ввод Вывод
6 3
2 5 7 11 15 20
9


Источник: http://informatics.mccme.ru/moodle/mod/statements/view.php?chapterid=1#

Дипломы

Бинарный поиск по ответу

Когда Петя учился в школе, он часто участвовал в олимпиадах по информатике, математике и физике. Так как он был достаточно способным мальчиком и усердно учился, то на многих из этих олимпиад он получал дипломы. К окончанию школы у него накопилось n дипломов, причём, как оказалось, все они имели одинаковые размеры: w — в ширину и h — в высоту. Сейчас Петя учится в одном из лучших российских университетов и живёт в общежитии со своими одногруппниками. Он решил украсить свою комнату, повесив на одну из стен свои дипломы за школьные олимпиады. Так как к бетонной стене прикрепить дипломы достаточно трудно, то он решил купить специальную доску из пробкового дерева, чтобы прикрепить её к стене, а к ней — дипломы. Для того чтобы эта конструкция выглядела более красиво, Петя хочет, чтобы доска была квадратной и занимала как можно меньше места на стене. Каждый диплом должен быть размещён строго в прямоугольнике размером w на h. Дипломы запрещается поворачивать на 90 градусов. Прямоугольники, соответствующие различным дипломам, не должны иметь общих внутренних точек. Требуется написать программу, которая вычислит минимальный размер стороны доски, которая потребуется Пете для размещения всех своих дипломов.

Входные данные
Входной файл содержит три целых числа: w, h, n (1<=w, h, n <= 109 ).
 
Выходные данные
В выходной файл необходимо вывести ответ на поставленную задачу.




Ввод Вывод
2 3 10 9
1 1 1 1

Очень легкая задача

Бинарный поиск по ответу

Сегодня утром жюри решило добавить в вариант олимпиады еще одну, Очень Легкую Задачу. Ответственный секретарь Оргкомитета напечатал ее условие в одном экземпляре, и теперь ему нужно до начала олимпиады успеть сделать еще N копий. В его распоряжении имеются два ксерокса, один из которых копирует лист за х секунд, а другой – за y. (Разрешается использовать как один ксерокс, так и оба одновременно. Можно копировать не только с оригинала, но и с копии.) Помогите ему выяснить, какое минимальное время для этого потребуется.

Формат входных данных
Во входном файле записаны три натуральных числа N, x и y, разделенные пробелом (1 ≤ N ≤ 2108, 1 ≤ x≤ 10).

Формат выходных данных
Выведите одно число – минимальное время в секундах, необходимое для получения N копий.

Ввод Вывод
4 1 1 3
5 1 2 4