Плюсануть
Поделиться
Класснуть
Запинить

Задачи из рубрикатора

Тег: НОД и алгоритм Евклида

Условие задачи  
ID 18692
Длинный НОД
Темы: Рекурсия    НОД и алгоритм Евклида   

Даны два числа. Найти их наибольший общий делитель.
 
Входные данные: Вводятся два натуральных числа, не превышающих 10^9, (запись 10^9 обозначает "10 в 9-й степени", то есть 1000000000).
Выходные данные: Выведите НОД введенных чисел

Примеры
Входные данные Выходные данные
1 42 12 6

ID 30770
Единичный НОД
Темы: НОД и алгоритм Евклида   

Заданы два натуральных числа в десятичной системе счисления, состоящие из единиц. В первом числе ровно N единиц, а во втором их ровно M. Требуется найти НОД этих чисел. 
 
Входные данные
В единственной строке  записаны два целых числа N и M (\(1 <= N,\ M <= 2000\)).
 
Выходные данные
Выведите ответ без ведущих нулей.
 

 

Примеры
Входные данные Выходные данные
1 1 1 1
2 1 2 1

ID 37550
Папа и дочь
Темы: НОД и алгоритм Евклида   

Длина шага папы – А см, а у маленькой дочери – В см. Они начинают идти, поставив ноги на одну отметку. Какое расстояние они пройдут, чтобы их ноги опять встали вровень?

Оформите решение задачи в виде функции solve(A, B), которая возвращает ответ. Ничего вводить и выводить Вам не нужно!

Примеры

Входные данные Выходные данные
1 70 15 210

ID 37551
Математический конкурс
Темы: НОД и алгоритм Евклида   

На математическом конкурсе ребята играли в увлекательную древнюю китайскую головоломку Танграм. В одном игровом комплекте было А остроугольных, а в другом - В тупоугольных треугольников. Какое наименьшее число участников могут пользоваться комплектами из одинакового количества каждого вида треугольников?

Оформите решение задачи в виде функции solve(A, B), которая возвращает ответ. Ничего вводить и выводить Вам не нужно!

Примеры

Входные данные Выходные данные
1 12 15 60

ID 37552
Орхидеи
Темы: НОД и алгоритм Евклида   

В теплице посадили в 2 ряда разные сорта орхидей. Цветы одного сорта разместили на расстоянии А см между растениями, а другого - на В см. Через какое расстояние орхидеи обоих сортов окажутся рядом? 

Оформите решение задачи в виде функции solve(A, B), которая возвращает ответ. Ничего вводить и выводить Вам не нужно!

Примеры

Входные данные Выходные данные
1 15 18 90

ID 37553
Объем информации
Темы: НОД и алгоритм Евклида   

Студент на первом курсе скачивал из интернета в среднем А Кбайт информации в день, а на втором курсе – В Кбайт, оплачивая одну и ту же сумму денег за полученный интернетный трафик в неделю. Какой наименьший объем информации в Кбайтах он скачивал за неделю?

Оформите решение задачи в виде функции solve(A, B), которая возвращает ответ. Ничего вводить и выводить Вам не нужно!

Примеры

Входные данные Выходные данные
1 60 75 300

ID 37554
Вьетнамские умельцы
Темы: НОД и алгоритм Евклида   

Вьетнамские народные умельцы из кусочков рисовой соломки делают декоративные панно, наклеивая их на досточки. Какой наименьшей длины (в мм) должна быть соломка, чтобы ее можно было разрезать на равные части по А мм и В мм, не получая обрезков?

Оформите решение задачи в виде функции solve(A, B), которая возвращает ответ. Ничего вводить и выводить Вам не нужно!

Примеры

Входные данные Выходные данные
1 20 27 540

ID 21815
НОД и НОК
Темы: НОД и алгоритм Евклида   

Сережа очень любит математические задачи. Недавно на математическом кружке ему рассказали, что такое НОД и НОК. 
НОД двух натуральных чисел a и b — это их наибольший общий делитель, то есть такое максимальное число x, что a делится на x и b делится на x. Например, \(НОД(24, 18) = 6\). А НОК целых чисел a и b — это их наименьшее общее кратное, то есть такое минимальное число x, что x делится на a и x делится на b. Например, \(НОК(24, 18) = 72\).
Сережа сразу заметил, что может существовать несколько пар чисел с одинаковыми НОД и НОК. Теперь он заинтересовался вопросом: если заданы числа a и b, насколько близко друг к другу могут быть два числа, у которых такие же НОД и НОК.
Помогите ему по заданным двум числам a и b найти такие числа x и y, что \(НОД(a, b) = НОД(x, y)\), \(НОК(a, b) = НОК(x, y)\), а их разность \(y - x\) минимальна. 

Входные данные 
В первой строке входного файла находятся два натуральных числа a и b (\(1 <= a, b <= 10^9\)).
 
Выходные данные 
Выведите два натуральных числа x и y (\(1 <= x <= y\)), таких, что \(НОД(a, b) = НОД(x, y)\)\(НОК(a, b) = НОК(x, y)\), а их разность \(y - x\) минимальна.
 
Примеры
Входные данные Выходные данные
1 3 4 3 4

ID 12482
Упорядоченные дроби
Темы: НОД и алгоритм Евклида   

Вывести в порядке возрастания все несократимые дроби, заключённые между 0 и 1, знаменатели которых не превышают N.

Входные данные 
В первой строке находится единственное число N (\(2 <= N <= 255\)).

Выходные данные 
В каждой строке выводится одна дробь.
 
Примеры
Входные данные Выходные данные
1 5 1/5
1/4
1/3
2/5
1/2
3/5
2/3
3/4
4/5

 

ID 30777
Апельсины
Темы: НОД и алгоритм Евклида   

Катя решила пригласить к себе в гости n друзей. Так как ее друзья очень любят фрукты, то в качестве угощения для них она купила m одинаковых апельсинов. Она хочет разрезать каждый апельсин на одинаковое число равных долек так, чтобы их можно было распределить между гостями (сама Катя апельсины есть не будет), и всем досталось одинаковое количество долек.

Напишите программу, которая вычисляет минимальное количество долек, на которое необходимо разрезать каждый апельсин, чтобы были выполнены указанные выше условия.
 

Входные данные 
Входная строка содержит два положительных целых числа n и m (\(1 <= n, m <= 10^9\)).

Выходные данные 
Выведите ответ на задачу.
 
Примеры
Входные данные Выходные данные
1 2 5 2
2 2 4 1

ID 12483
Квадраты
Темы: НОД и алгоритм Евклида   

На уроке труда всем раздали по прямоугольнику со сторонами размером A и B (целые, \(1 <= A, B <= 2^{31} - 1\)). Мальчик Сеня очень любит резать прямоугольники с особым цинизмом, и когда учитель предлагает всем вырезать из прямоугольника квадраты, то Сеня поступает весьма хитроумно. Он одним разрезом, параллельным стороне прямоугольника, отсекает от прямоугольника квадрат со стороной, равной наименьшей стороне прямоугольника и продолжает проделывать эту же процедуру с оставшейся после разреза частью. Если часть оказывается квадратом, то Сеня успокаивается и принимается считать получившиеся квадраты.
Сколько же он нарежет квадратов?

Входные данные
Числа A и B, задаются в одной строке через пробел.

Выходные данные
Количество получившихся квадратов.
 


Примеры
Входные данные Выходные данные
1 1 2 2

ID 31872
Сложить две дроби
Темы: НОД и алгоритм Евклида   

Даны две рациональные дроби: \(a \over b\) и \(c \over d\). Сложите их и результат представьте в виде несократимой дроби \(m \over n\).
 
Входные данные 
Программа получает на вход 4 натуральных числа a, b, c, d, не превосходящих 100.
 
Выходные данные 
Программа должна вывести 2 натуральных числа m и n такие, что \({m \over n} = {a \over b}+ {c \over d}\) и дробь \(m \over n\) – несократима.
 
Примеры
Входные данные Выходные данные
1  1 3 1 2 5 6

ID 29423
Сокращение дроби
Темы: НОД и алгоритм Евклида   

Дана дробь \(a \over b\). Требуется ее сократить, то есть записать это же число в виде \(c \over d\), где c — целое число, d - натуральное число и d минимальное возможное.
 
Входные данные 
Вводятся два целых числа a и b (\(-100<=a<=100,\ 0<b<=100\)).

Выходные данные 
Выведите два числа c и d.
 
Примеры
Входные данные Выходные данные
1 3 6  1 2
2 -2 5 -2 5

ID 34852
Длинный НОД
Темы: НОД и алгоритм Евклида   

Даны два числа. Найти их наибольший общий делитель.
 
Входные данные 
Вводятся два натуральных числа, не превышающих 109.

Выходные данные 
Выведите НОД введенных чисел.
 

Примеры
Входные данные Выходные данные
1 42 12 6

ID 18691
Короткий НОД
Темы: НОД и алгоритм Евклида   

Даны два числа. Найти их наибольший общий делитель.
 
Входные данные 
Вводятся два натуральных числа, не превышающих 30000.
 
Выходные данные 
Выведите НОД введенных чисел.
 
 
Примеры
Входные данные Выходные данные
1 42 12 6
 

ID 24905
НОД и НОК
Темы: НОД и алгоритм Евклида   

Дано число n – количество чисел. В следующей строке дано n чисел, каждое не больше 1000.
Вам необходимо вывести количество таких пар чисел (a, b), что НОК (a, b) = НОД (a, b).

НОК (a, b) - наименьшее общее кратное этих двух чисел, то есть наименьшее число, которое делится сразу на оба числа. \( НОК (20, 30) = 60\).
НОД (a, b) – наибольший общий делитель этих двух чисел, то есть наибольшее число, на которое делятся оба числа. \(НОД (20, 30) = 10\).
Напишите эффективную по памяти и времени программу.

Входные данные
В первой строке вводится натуральное число n – количество данных вам чисел.
Во второй строке вводятся сами числа, каждое из них целое и принадлежит отрезку [0; 1000].
 
Выходные данные
Выведите одно целое число – количество пар чисел (a, b), таких, что НОК(a,b) = НОД(a,b).
 

 

Примеры
Входные данные Выходные данные
1 3
3 3 3
3

 

ID 38258
Тушенка
Темы: НОД и алгоритм Евклида   

Приближалось лето, и Игорь, Гена и Денис решили пойти вместе в поход, как и в прошлом году. Почти все вопросы уже были решены: уже был проработан маршрут, куплены билеты на поезд, в шкафу у Дениса найдена четырехместная палатка, а под кроватью у Игоря — топор. Осталось решить только вопрос с продуктами.

В прошлом году ребята честно признались, что не знают, сколько им нужно продуктов, и попросили помочь свою одноклассницу Настю, которая составила им список покупок. Но в этом году снова спрашивать у нее уже как-то несолидно. Можно было бы посмотреть, сколько они покупали в прошлом году, и взять столько же, но ни у кого из ребят не сохранилось ни чеков, ни списка продуктов.

Зато у них сохранилась переписка в социальной сети, где они спорили, кто сколько банок тушенки понесет. В этой переписке Игорь сначала предложил поделить всю тушенку в отношении a: b: c, так, что первую часть понесет сам Игорь, вторую — Гена, а третью — Денис. Но Денису это не понравилось, и он предложил поменять соотношение на d: e: f.

Еще немного подумав, ребята поняли, что разрезать банки с тушенкой они все-таки не стали бы, и, значит, оба отношения были подобраны так, что у каждого в обоих случаях получалось целое число банок.

По данным двум отношениям a: b: c и d: e: f вычислите, сколько банок тушенки ребята покупали для прошлогоднего похода. Из всех возможных ответов выведите минимальный. Ребята помнят, что как минимум одна банка тушенки у них точно была.

Входные данные
В первой строке даны три целых положительных числа a, b, c, разделенные пробелами. Во второй строке даны три целых положительных числа d, e, f, также разделенные пробелами.

Все числа не превышают 1000.

Выходные данные
Выведите целое положительное число — количество банок тушенки.
 

Примеры
Входные данные Выходные данные Пояснения
1 10 3 7
3 1 1
20 При делении тушенки между ребятами в отношении 10:3:7 Игорь понесет 10 банок, Гена — 3 банки, а Денис — 7 банок. А в случае соотношения 3:1:1 Игорю достанется 12 банок, а Гене и Денису по 4.

ID 38300
Автобусы
Темы: НОД и алгоритм Евклида   

В Берляндии плачевная ситуация с междугородним автобусным сообщением. Во всей стране есть всего три автобусных маршрута, по каждому из которых курсирует лишь один автобус. В первый день нового года ровно в полночь все три автобуса отправляются по своим маршрутам из столицы Берляндии. Известно, что первому автобусу на то, чтобы проехать весь маршрут и вернуться в столицу требуется a минут, второму — b минут, а третьему — c минут. Таким образом, первый автобус отправляется из столицы Берляндии в моменты времени 0, a, 2a, 3a , второй — в моменты времени 0, b, 2b, 3b , а третий в моменты времени 0, c, 2c, 3c .

Момент времени называется подходящим для пересадки , если в этот момент все три автобуса отправляются из столицы Берляндии. Например если a=1, b=2, c=1, то моменты времени 0 и 2 являются подходящими для пересадки, а момент времени 1 не является, потому что в этот момент времени второй автобус находится в пути. Берляндия — особая страна с особым измерением времени, поэтому в берляндских сутках ровно t минут. Это означает, что в первый день происходят все моменты времени с 0-го по (t−1)-й включительно, во второй день — c t-го по (2t−1)-й включительно, в третий — с 2t-го по (3t−1)-й включительно и так далее.

Министерство транспорта Берляндии заинтересовалось, сколько подходящих для пересадки моментов времени произойдёт в d-й день в Берляндии. К сожалению, местные чиновники заняты другими делами, поэтому ответить на этот вопрос было поручено вам.

Входные данные
В пяти строках заданы пять целых чисел a, b, c, t  и d (1≤a, b, c≤106 , 1≤t, d≤109 ) — время полного прохождения маршрута первым, вторым и третьим автобусами, соответственно, количество минут в сутках и номер дня, которым интересуется министерство транспорта Берляндии.

Выходные данные
Выведите одно целое число — количество подходящих для пересадки моментов времени в d-й день.

Примеры
Входные данные Выходные данные Пояснения
1 1
2
1
3
1
2 Сутки длятся 3 минуты, поэтому все моменты времени в день с номером 1 — это 0, 1, 2, из них моменты времени 0 и 2 являются подходящими для пересадки
2 2
3
4
7
2
1 Здесь рассматриваются вторые сутки с моментами времени 7, 8, 9, 10, 11, 12, 13. Первый автобус отправляется в моменты времени 8, 10, 12, второй автобус — в моменты времени 9 и 12, а третий — в моменты времени 8 и 12. Таким образом, только момент времени 12 является подходящим для пересадки.
3 2
3
4
3
3
0 Нет ни одного подходящего для пересадки момента времени

ID 38323
Отрезок_0
Темы: НОД и алгоритм Евклида   

На клетчатой бумаге Петя нарисовал отрезок из точки с координатами (a,b) в точку с координатами (c,d). Через сколько клеток проходит этот отрезок (считается, что отрезок проходит через клетку, если он проходит через ее внутренность, если же он проходит только через вершину или по границе клетки, считается, что он не проходит через клетку).

Входные данные
Вводятся целые числа a, b, c, d. Числа по модулю не превышают 109.

Выходные данные
Выведите одно число — количество клеток, через которые проходит отрезок.

Примеры
Входные данные Выходные данные
1 0 0 6 4 8
2 3 3 -3 3 0

ID 38432
Целые точки
Темы: Элементарная геометрия    НОД и алгоритм Евклида   

Многоугольник (не обязательно выпуклый) на плоскости задан координатами своих вершин. Требуется подсчитать количество точек с целочисленными координатами, лежащих внутри него (но не на его границе).

Формат входных данных
    В первой строке содержится N (3 ≤N ≤1000) – число вершин многоуголь¬ника. В последующих N строках идут координаты (Xi, Yi) вершин многоугольника в порядке обхода по часовой стрелке. Xi и Yi - целые числа, по модулю не превосходящие 1000000.

Формат выходных данных
В выходной файл вывести одно число – искомое число точек.

Примеры
Входные данные Выходные данные
1 4
-1 -1
-1 1
1 1
1 -1
1
2 3
0 0
0 2
2 0
 
0

ID 38584
Много часов
Темы: НОД и алгоритм Евклида   

У нас есть N часов. Стрелка i-х часов (\(1<=i<=N\)) поворачивается на 360 ° ровно за Ti секунд. Изначально стрелка всех часов стоит на месте и направлена прямо вверх. Громозека запускает все часы одновременно. Через сколько секунд стрелка всех часов снова укажет прямо вверх?

Входные данные
В первой строке записано целое число N (\(1<=N<=100\)). В следующих строках записаны целые числа Ti (\(1<=T_i<=10^{18}\)), по одному числу в строке. 

Выходные данные
Выведите на экран ответ. Гарантируется, что ответ не превышает \(10^{18}\).
 

 

Примеры
Входные данные Выходные данные Пояснение
1 2
2
3
6 У нас есть двое часов. Время, когда стрелка каждых часов указывает вверх, выглядит следующим образом:
Часы 1: 2, 4, 6, ... секунд после начала.
Часы 2: 3, 6, 9, ... секунд после начала.
Таким образом, требуется 6 секунд, пока стрелки обоих часов снова не укажут прямо вверх.
2 5
2
5
10
1000000000000000000
1000000000000000000
1000000000000000000